- (24) Kraus, K. A., Holmberg, R. W., *J. Phys. Chem.*, **58**, 325 (1954).
 (25) Lange, E., Miederer, W., *Z. Elektrochem.*, **61**, 407 (1957).
 (26) Lewis, G. N., Randall, M., revised by K. S. Pitzer and L. Brewer, "Thermodynamics", 2d ed, McGraw-Hill, New York, N.Y., 1961. AH is tabulated on n 640.
- (27) Marshall, W. L., Gill, J. S., Secoy, C. H., *J. Am. Chem. Soc.*, **73**, 4991 (1951).
 (28) Misciatelli, P., *Gazz. Chim. Ital.*, **60**, 833 (1930).
- (29) Morss, L. R., J. Chem. Thermodyn., 7, 709 (1975).
 (30) Morss, L. R., Ph.D. Thesis, University of California, Berkeley, 1969 (Lawrence Radiation Laboratory Report UCRL-18951). (31) Morss, L. R., Cobble, J. W., Abstracts, 160th National Meeting of the
- American Chemical Society, Chicago, III., Sept 1970, No. INOR-186 (to be published).
- (32) Ohashi, H., Morozumi, T., *Nippon Genshiryoku Gakkaishi*, **10**, 244 (1968), *Chem. Abstr.*, **69**, 100131 (1968).
 (33) Pan, K., Hseu, T. M., *Bull. Chem. Soc. Jpn.*, **28**, 162 (1955).
 (34) Robinson, R. A., Levien, B., *Trans. R. Soc. N.Z.*, **76**, 295 (1946).
- (35) Shannon, R. D., Prewitt, C. T., Acta Crystallogr., Sect. B, 25, 925 (1969); 26, 1046 (1970).

- (36) Spedding, F. H., Csejka, D. A., DeKock, C. W., J. Phys. Chem., 70, 2423 (1966).
- (37) Staritzky, E., Anal. Chem., 26, 2021 (1956)
- Taylor, J. C., Mueller, M. H., Hitterman, R. L., Acta Crystallogr., 20, 842 (38) (1966).
- (39)Ueki, T., Zalkin, A., Templeton, D. H., Acta Crystallogr., 20, 836 (1966).
- (40) Wagman, D. D., personal communication.
 (41) Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., Schumm, R. H., *Natl. Bur. Stand.* (U.S.) Tech. Note, 270-3 (1968); 270-4 (1969); 270-5 (1970); 270-6 (1971); 270-7 (1973).
- Youmans, H. L., "Statistics for Chemistry", Charles E. Merrill, Columbus, (42)Ohio, 1973, Chapter 11 (43) Zebroski, E. L., Alter, H. W., Heumann, F. K., J. Am. Chem. Soc., 73, 5646
- (1951).

Received for review November 17, 1975. Accepted March 1, 1976. This research was supported by the donors of the Petroleum Research Fund, administered by the American Chemical Society, and by the U.S. Atomic Energy Commission, equipment Grant AT(11-1)-2214.

Isopiestic Determination of the Activity Coefficients of Some Aqueous Rare Earth Electrolyte Solutions at 25 °C. 1. The Rare Earth Chlorides

Frank H. Spedding,* Herman O. Weber, Victor W. Saeger, Harry H. Petheram, Joseph A. Rard, and Anton Habenschuss

Ames Laboratory-ERDA and Department of Chemistry, Iowa State University, Ames, Iowa 50011

The osmotic coefficients of the aqueous trichlorides of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y have been determined from 0.1 m to saturation at 25 °C. Semiempirical least-squares equations were obtained for the osmotic coefficients as a function of molality and these equations were used to calculate water activities and mean molal activity coefficients. The water activities of the light rare earth chlorides at constant molalities are higher than for the heavy rare earths, while the mean molal activity coefficients are larger for the heavy rare earths than for the light ones. The above effects are discussed in terms of changes in the cationic radii and hydration of the rare earth lons.

Attempts to explain irregularities in the thermodynamic (3, 10, 17, 20, 24, 25) and transport (23, 26) properties of aqueous rare earth electrolyte solutions have given rise to a model in which the light and heavy rare earth cations have different inner sphere hydration numbers, with the rare earths from Nd to Tb being mixtures of the two different coordinated forms. Transport properties (23, 26) depend mainly on overall hydration and indicate that an overall hydration increase occurs from La to Lu. The inner sphere hydration change is not seen directly in the rare earth chlorides but is reflected in the overall hydration trend. Water activities and electrolyte activity coefficients were determined since they are of fundamental importance in studying the thermodynamic behavior of these systems. In addition, the water activities are intimately related to solvation in aqueous solutions so isopiestic measurements are also of value for studying changes in hydration across the rare earth series.

Activity coefficient measurements on the rare earth chlorides have been reported by Robinson (14), Mason (7, 8), and Mason and Ernst (9). However, these measurements were for less than half of the rare earths and extend only to 2.0 m. In this study, isopiestic measurements have been performed from 0.1 m to saturation on 14 of the rare earth chlorides, including YCI₃. A number of the the first and second derivative properties of the activities are available including the partial molal volumes (24), expansibilities (2, 3), heats of dilution (1, 11), and heat capacities (25).

Experimental Section

Apparatus and Experimental Procedure. The isopiestic apparatus employed in this research consisted of three rectangular stainless steel equilibration chambers, each containing a copper block. Each of these copper blocks had eight recesses (gold plated to reduce corrosion) in which the sample cups were firmly positioned. The cups were constructed of tantalum or of heavily gold-plated silver. A piece of platinum gauze was added to each cup to assist in the equilibration process. The equilibration chambers were slowly evacuated at the beginning of each isopiestic run. The temperature bath was controlled at 25.00 \pm 0.01 °C and contained a rocking device for the chambers. The chambers were made large enough to act as thermal buffers; consequently thermal fluctuations within the chambers were much smaller than in the temperature bath. The experimental apparatus and procedure are described in more detail elsewhere (12, 15).

The isopiestic equilibrium molalities were calculated from the weight of analyzed stock solution added to each cup and the weight of solution present in these cups at the end of each equilibration period. Two samples of each solution were run and the average equilibrium molalities were used in all calculations. Each cup was covered with a tight fitting plastic cap when removed from the equilibration chambers for weighing. All weights were corrected to vacuum. Vacuum corrections for the rare earth chloride solutions were made using the density data of Spedding and co-workers (24) and the density data for KCI and $CaCI_2$ were taken from the International Critical Tables.

The samples in each chamber were assumed to have reached isopiestic equilibrium when the concentrations of two samples of each salt solution were found to agree to within $\pm 0.1\%$ of their average molality for concentrations above 0.5 m and to within 0.15% for the more dilute solutions. However, in many cases the equilibrations were done to better than $\pm 0.05\%$ above 0.3 m. Conductivity water was added to the various cups in such a manner that isopiestic equilibrium was approached from both directions for each salt concentration. Equilibration periods ranged from 2 to 4 days for the more concentrated solutions and from 2 weeks to 1 month for the dilute solutions. Extra cups containing both solution and crystals were added to the chamber when the saturated solutions were being studied. Duplicate samples were equilibrated in the chambers for at least 1 week before saturated solution weighings were started and measurements were made at 3- or 4-day intervals for about 2 weeks.

Preparation of Solutions. Solutions of the stoichiometric salts of the rare earth chlorides were prepared by the method of Spedding, Pikal, and Ayers (20). When these solutions are brought to their equivalence points, chemical analyses indicate that the ratio of rare earth ion to chloride ion is one to three. These solutions were analyzed for the chloride ion by the standard gravimetric method and for the rare earth ion by oxalate or sulfate methods (20).

The KCl used in preparing the isopiestic standards was twice recrystallized reagent grade KCl which had been fused under nitrogen. The standard KCl solutions were prepared from weighed amounts of this anhydrous KCl and conductivity water. The CaCl₂, used in the preparation of the other set of standards, was prepared by the method of Stokes (*28*). The CaCl₂ standard solutions were analyzed by the standard gravimetric chloride and sulfate methods. The anion and cation analyses gave results that agreed to within $\pm 0.05\%$ of the average for both CaCl₂ and rare earth chloride stock solutions. The conductivity water used in the solution preparation and dilution processes was distilled from a KOH–KMnO₄ solution.

Calculations and Errors

The molal osmotic coefficient of an electrolyte solution, ϕ , is defined by the equation

$$\phi = -(1000 \ln a_1) / (\nu m M_1) \tag{1}$$

where a_1 is the activity of the solvent, ν is the total number of ions formed by the complete dissociation of one molecule of the solute, *m* is the molality of the solute, and $M_1 = 18.0154$ g/mol is the molecular weight of water. If this solution is in equilibrium with a reference standard solution having a known osmotic coefficient, then

$$\phi = (\nu^* \phi^* m^*) / (\nu m)$$
(2)

where the asterisk refers to the standard solution. The resulting osmotic coefficients can then be used in the calculation of the mean molal activity coefficients of the electrolyte being studied. Application of the Gibbs–Duhem equation gives

$$\ln \gamma_{\pm} = \int_{1}^{\phi} d\phi - \int_{0}^{m} (1 - \phi) / m \, dm$$
 (3)

These integrations are most conveniently performed using analytic representations for the osmotic coefficients.

Values for the osmotic coefficients of the KCI solutions were taken from Hamer and Wu (4) and were corrected for the nonideal behavior of the solvent vapor, proportional to the amount of vapor pressure data used (13). Literature values for the osmotic coefficients of CaCl₂ and H₂SO₄ measured isopiestically against KCl and NaCl were recalculated using Hamer and Wu's equations corrected for the nonideal behavior of the solvent vapor. Vapor pressure measurements for $CaCl_2$ and H_2SO_4 were corrected for the nonideal behavior of the solvent vapor and converted to presently accepted values for the vapor pressure of water. The new values for the osmotic coefficients of H_2SO_4 (13) were used to calculate additional osmotic coefficients for $CaCl_2$ from available isopiestic ratio data. The resulting values were fitted to

$$\phi = 1 - (A/B^3m)((1 + B\sqrt{m}) - 1/(1 + B\sqrt{m}))$$
$$-2 \ln (1 + B\sqrt{m})) + \sum A_i m^{r_i} \quad (4)$$

where A = 4.0743, B = 3.470, $r_1 = 0.750$, $r_2 = 0.875$, $r_3 = 1.000$, $r_4 = 1.125$, $r_5 = 7$, $r_6 = 8$, $r_7 = 10$, $A_1 = -1.763$ 151 4, $A_2 = 5.174$ 772 7, $A_3 = -5.714$ 201 5, $A_4 = 2.467$ 735 4, $A_5 = -3.876$ 519 2 × 10⁻⁶, $A_6 = 5.045$ 287 8 × 10⁻⁷, and $A_7 = -1.421$ 369 5 × 10⁻⁹. This equation was used to calculate the rare earth chloride osmotic coefficients for solutions in equilibrium with CaCl₂. The analysis of the CaCl₂ osmotic coefficient data will be the subject of a forthcoming paper.

The isopiestic data for the rare earth chloride solutions do not quite extend to the minima in the osmotic coefficient vs. m curves. Since eq 3 involves integrals of ϕ from infinite dilution to the concentration of interest, it is important that an analytic expression for ϕ be reliable at low concentrations. Consequently, the data reported here are insufficient to guarantee that mean molal activity coefficients would be as accurate as desired when calculated from eq 3, since the integrals would be uncertain below 0.1 m. Fortunately, experimental emf measurements are available for the rare earth chlorides from about 0.001 to 0.02–0.04 m (16, 18, 19, 21, 22, 27) and activity coefficients calculated from these data can be used to yield low concentration osmotic coefficients by use of

$$\phi = 1 + 1/m \int_0^m m \,\mathrm{d} \ln \gamma_{\pm} \tag{5}$$

Heiser's LaCl₃ data (5) and Mason's YCl₃ data (7) are in good agreement with the data reported here, so their data were recalculated to conform to the same isopiestic standards used here and were included in the least-squares analysis.

Spedding et al. (16, 18, 19, 21, 22, 27) report mean molar activity coefficients as a function of the molarity whereas mean molal activity coefficients as a function of the molality are desirable for performing the integration in eq 5. These emf data were measured using concentration cells with transference so activity coefficients relative to a reference concentration were obtained. They obtained absolute values for the activity coefficients assuming that the Debye-Huckel equation was obeyed for each salt up to 0.02-0.04 m. However, examination of these data indicated that small systematic deviations occurred when their data were assumed to obey the Debye-Huckel equation with an ion-size parameter. It appeared that adding a term linear in *m* to the Debye-Huckel equation would give a slightly better fit for each sait. Consequently, it was decided to recalculate their data and to cast them into a form consistent with the data reported here.

Spedding et al. data (18, 19, 21, 22, 27) were updated for changes in the fundamental constants in recent years. Relative mean molal activity coefficients were then obtained from their emf data using the equation

$$\ln (\gamma_{\pm}/\gamma_{\pm}') = \ln (m'/m) - 3F/4RT(E/t_{+}') + \int_{0}^{E} (1/t_{+} - 1/t_{+}') dE)$$
(6)

where $3F/4RT = 3(96 \ 487.0)/4(8.3143)(298.15) = 29.192$ (abs V)⁻¹, *F* is Faraday's constant, *E* is the observed emf in absolute volts, *m* is the molality of the solution being studied, and *t*₊ is the cation transference number of this solution. The primed

symbols refer to the solution used as a reference solution for all of the measurements for that salt in the concentration cells. In some cases the experimental emf's were not listed in Spedding et al. papers and in most cases only molar concentrations were reported. The remaining emf and molality data were obtained from the theses and original laboratory notebooks upon which these papers were based. The resulting values of m, t_+ , E, and $\gamma_{\pm}/\gamma_{\pm}'$ are listed in Table I (see paragraph at end of paper regarding supplementary material). It was necessary to make these recalculations in terms of m and γ_{\pm} in order to calculate the osmotic coefficients by eq 5.

Since the mean molal activity coefficients do not follow the Debye–Huckel equation quite up to 0.02-0.04 m, a linear term was added to the equation such that

$$\ln \gamma_{\pm} = \ln (\gamma_{\pm} / \gamma_{\pm}') + \ln \gamma_{\pm}' = -A\sqrt{m}/(1 + B\sqrt{m}) + Dm$$
(7)

where $A = (0.5108)(3)(\sqrt{6})(2.302585) = 8.6430$, $B = (0.3287)(\sqrt{6})a = 0.80515a$ and a is the Debye–Huckel ion-size parameter in angstroms. This equation can be rearranged to give

$$\ln (\gamma_{\pm}/\gamma_{\pm}') + Am^{1/2} + \ln \gamma_{\pm}' - Dm = -B(-Dm^{3/2} + m^{1/2}(\ln (\gamma_{\pm}/\gamma_{\pm}') + \ln \gamma_{\pm}'))$$
(8)

where $\gamma_{\pm}/\gamma_{\pm}'$, *A*, and *m* are known. Optimum values for γ_{\pm}' , *B*, and *D* were obtained by use of a nonlinear least-squares method. Values for γ_{\pm}' and *B* were also obtained at D = 0. The final values for these parameters are listed in Table II. The inclusion of the linear term in the Debye–Huckel equation resulted in changes in γ_{\pm} of less than 0.6% in all cases. Tb, Dy, and Lu are not listed in Tables I and II since the scatter in their data is too large to warrent applying this procedure. In addition, no emf data were available for Y. It should be noted that *D* is always negative and is smallest for Eu but becomes larger for the light and heavy rare earths.

In Figure 1 the differences between the experimental and calculated values of the relative activity coefficients are shown, for La, as a function of the square root of the molality. These deviations are shown for D = 0 and for the best value of D. It should be noted that adding a linear term to the Debye–Huckel equation appears adequate to represent rare earth chloride activity coefficients up to 0.02-0.04 m.

Substitution of eq 7 into eq 5 and integrating gives

$$\phi = 1 - (A/B^3m)((1 + B\sqrt{m}) - 1/(1 + B\sqrt{m})) - 2 \ln (1 + B\sqrt{m})) + (D/2)m \quad (9)$$

Values of ϕ were calculated at 0.005 *m* intervals up to, and including, the highest concentration for each salt using the values of a and *D* from Table II. Values for the osmotic coefficients of Tb, Dy, and Lu were obtained by interpolation of the data for the adjacent rare earths. Dilute osmotic coefficients for Y were obtained assuming that it fell between Er and Tm (as it does at higher concentrations). These dilute ϕ values, the experimental isopiestic molalities, and the rare earth chloride osmotic coefficients are listed in Table III. Except for the ErCl₃ set 1 solutions, the highest concentration reported for each salt is the saturated solution. Although the values of a and *D* are quite different for the two sets of Yb dilute emf data, the calculated osmotic coefficients are in good agreement, so their averages are listed in Table III and were used in subsequent calculations.

All the osmotic coefficients for each rare earth chloride in Table III were then fitted to equations of the form

$$\phi = 1 - (A/3)\sqrt{m} + \sum_{i} A_{i}m^{r_{i}}$$
(10)

using unit weights. The r_i 's were not required to form a consecutive sequence of powers. Originally the osmotic coefficients for several salts were fitted to equations of the form of eq 9 with additional terms, but it was found that the additional terms al-

 Table II. Rare Earth Chloride Debye-Huckel

 Equation Parameters

Salt	åa	D^a	$\gamma_{\pm}{}^{'a}$	åb	γ_{\pm} 'b	mc
Lad	6.662	-1.60	0.4346	5,798	0.4320	0.031 19
Ce^d	6.213	-0.70	0.4098	5.830	0.4089	0.040 09
Pr^d	6.175	-0.85	0.4284	5.731	0.4271	0.032 35
Nd ^e	6.087	-1.05	0.4201	5.573	0.4189	0.033 52
Sm^d	5.950	-0.55	0.4119	5.659	0.4110	0.037 46
Eud	5.696	-0.15	0.4156	5.616	0.4153	0.035 32
Gdf	6.044	-0.70	0.4183	5.679	0.4172	0.035 15
Ho ^e	6.446	-0.75	0.4314	6.032	0.4302	0.034 23
E.r ^e	6.520	-1.00	0.4235	5.982	0.4221	0.036 40
Tm ^e	6.649	-1.65	0.4731	5.895	0.4714	0.021 78
Yb^d	6.021	-0.50	0.4076	5.748	0.4068	0.040 17
Yb ^e	6.800	-1.65	0.4276	5.903	0.4254	0.034 17

^{*a*} These parameters are obtained by optimizing D. ^{*b*} These parameters are obtained for D = 0. ^{*c*} Highest concentrations to which eq 7 and 9 apply. ^{*d*} Data of Spedding, Porter, and Wright (22). ^{*e*} Data of Spedding and Dye (18). ^{*f*} Data of Spedding and Yaffe (27).

Figure 1. Differences between experimental and calculated relative mean molal activity coefficients of LaCl₃ at 25 $^{\circ}$ C. Deviations at D = 0 (eq 7) and for the optimized D are shown.

ternated in sign and were large relative to the ion-size term. Consequently, only the Debye–Huckel limiting law was retained and eq 10 used instead. Substitution of eq 10 into eq 3 and integrating yields

$$\ln \gamma_{\pm} = -A\sqrt{m} + \sum_{i} A_{i}((r_{i} + 1)/r_{i})m^{r_{i}}$$
(11)

It was found that good fits could be obtained for the rare earth chlorides using seven terms in the series with the first four terms fixed at $r_1 = 0.75$, $r_2 = 0.875$, $r_3 = 1$, and $r_4 = 1.125$ while the other terms were allowed to vary up to m^{12} in increments of $m^{1/2}$ (a similar series was found to work best for H_2SO_4). These parameters and powers are listed in Table IV. There were other series that would have done almost as well as the ones used here, but the ones reported were chosen because they required the smallest number of terms and had the most powers in common. The differences between the experimental and calculated osmotic coefficients, $\Delta \phi$, are listed in Table III. For most of the salts the dilute points generated from the emf data connected up well with the experimental isopiestic data. For Ho, Tm, and Lu the deviations from the fits indicated that slight mismatches occur in the data so activity coefficients for these salts will be known less accurately. The standard deviations of eq 10 ranged from 0.0012 to 0.0023 for the various rare earth chlorides and these values are also listed in Table IV. Table V contains values of ϕ , a_1 , and γ_{\pm} at various even molalities.

Journal of Chemical and Engineering Data, Vol. 21, No. 3, 1976 343

Table III.	. Isopiestic	Molalities and	Osmotic	Coefficients	of S	Some I	Rare	Earth	Chlorides
------------	--------------	----------------	---------	--------------	------	--------	------	-------	-----------

m, ReCl ₃	<i>m</i> , standard	φ, ReCl ₃	$10^{3}\Delta\phi$	m, ReCl ₃	m, standard	φ, ReCl₃	10³Δφ
	LaCL (fro	m emf)		3.4725	4.7000	2.5005	0.4
0.005.00		0 9710	0.0	3.6286	4.8859	2.5595	-1.2
0.005 00		0.0712	0.0	3 6339	4.8924	2,5617	-1.1
0.010 00		0.0420	1.1	3 6818	4 9541	2.5835	2.7
0.015 00		0.8257	1.4	3 7690	5.0538	26113	-2.0
0.020 00	_	0.8134	0.9	3,8196	5 1 1 7 2	2 6320	-01
0.025 00		0.8037	0.1	3,8130	5.17/2	2,6489	_0.8
0.030 00		0.7957	-1.7	3.0072	5.1742	2.0405	-0.0
0.031 19		0.7939	-2.1	3.0944	5.2096	2.0010	1.5
	LaCI, v	s. KCI		0.005.00	PrCl ₃ (from	m emt)	0.0
0.113 13	0.192 61	0.7773 <i>ª</i>	0.2	0.005 00		0.8691	-0.8
0.116 04	0.196 00	0.7709 <i>a</i> , b	-6.5	0.010 00		0.8404	0.1
0 1 7 5 6 5	0.304.85	0.78574	-3.2	0.015 00		0.8236	0.6
0.184.33	0.322.91	0.7923^{a}	1.2	0.020 00		0.8120	0.6
0 188 12	0 329 65	0 79234	0.2	0.025 00		0.8033	0.3
0 1 9 9 30	0.351.26	0.79614	1.0	0.030 00		0.7963	-0.3
0.231.23	0.414.90	0.80864	43	0.032 35		0.7934	-0.7
0.251 25	0.467.37	0.81364			PrCL vs	KCI	
0.236 47	0.502/15	0.81564		0 1 1 5 00	0 107 40	0 7770	1.0
0.270 33	0.502 45	0.0100-	-5.5	0.115 80	0.197 40	0.7779	-1.2
0.303 10	0.339 29	0.0200-	1.0	0.13/40	0.237 20	0.7850	2.2
0.435 13	0.000 00	0.07004	1.0	0.277 17	0.506 27	0.8212	2.0
0.448 67	0.002 90	0.86254	0.6	0.379 35	0.729 20	0.8621	1.4
0.517 22	1.051 4	0.91244	0.4	0.433 17	0.852 14	0.8821	0.1
0.559 68	1.159 4	0.93074	0.1	0.465 21	0.925 81	0.8925	-2.7
0.632.00	1.351 4	0.96294	-0.6	0.467 23	0.930 41	0.8931	2.9
0.63766	1.368 6	0.96674	0.6	0.598 19	1.269 1	0.9543	1.0
0.695 50	1.531 4	0.9942	0.6	0.630 19	1.355 3	0.9685	0.5
0.713 92	1.581 4	1.00104	~1.5	0.665 89	1.455 3	0.9856	0.9
0.802 28	1,850 1	1.04/54	0.9	0.692 97	1.533 3	0.9991	1.4
0.835 81	1.954 2	1.0643	0.6	0.693 57	1.536 7	1.0005	2.5
0.938 55	2.288 2	1.1184	0.4	0.700 63	1.556 0	1.0032	1.8
1.018.8	2.336 4	1.15964	-1.9	0.706 25	1.572 8	1.0063	2.2
1.109 5	2.001 3	1.21004	-2.5	0.726 39	1.629 7	1.0148	0.8
1.125 6	2.944 3	1,2210	-0.7	0.727 20	1.632 1	1.0152	0.9
1.1// 2	3.140 0	1.2024	1.2	0.860 85	2.040 9	1.0813	-0.7
1.269 0	3.495 0	1.3007	2.1	0.864 87	2.060 3	1.0869	2.9
1.279 9	3,030 0	1.3130	2.0	0.974 92	2.417 8	1.1413	-1.6
1.395 9	4.000 0	1.3039	3.9	0.994 68	2.489 1	1.1537	0.0
1.540 6	4.020 2	1.4750*	7.6	1.057 4	2.706 4	1.1868	-1.7
		CaCl		1.062 3	2.724 9	1.1900	-1.3
1 1050			0.0	1.065 3	2.736 1	1.1919	-1.1
1.1256	1.5206	1.2209	-0.8	1.189 5	3.196 9	1.2637	-0.5
1,1//2	1.5958	1.2507	-0.5	1.194 1	3.217 9	1.2679	1.0
1.2468	1.6974	1.2915	-0.2	1.201 5	3.251 5	1.2745	3.3
1.2690	1.7294	1,3041	0.6	1.296 9	3.61/1	1,3283	0.5
1.2799	1.7462	1.3115	0.5	1,409 5	4.083 5	1.4003	4.3
1.3959	1.9152	1.3804	0.4	1.466 3	4.321 1	1.4353	4.4
1.5214	2.0956	1.4538	-2.0	1.476 5	4.363 /	1,4414	4.2
1.5406	2.1264	1.4686	1.2	1.476 8	4.365 3	1.441/	4.4
1.6441	2.2734	1.5285	-1.9		PrCL vs.	CaCL	
1.7322	2.4010	1.5830	-1.3	0 270 25	0 4 70 77	0.8626	20
1.9190	2.6668	1.6958	-2.5	0.379.33	0.47977	0.8811	_0.9
2.0211	2.8138	1.7604	0.4	0.433 17	0.349 99	0.0011	-0.9
2.0664	2.8760	1.7861	-1.1	0.596 19	0.775 44	0.9559	1.0
2.0934	2.9152	1.8038	0.4	0.630 19	0.017 90	0.9001	-1.9
2.2167	3.0864	1.8768	0.4	0.665.89	0.009 40	0.9656	0.9
2.3060	3.2102	1.9299	1.6	0.692.97	0.900 21	0.9971	-0.6
2.3380	3.2526	1.9470	0.3	0.093 57	0.906 33	1.0014	1.1
2.5290	3.5112	2.0557	1.6	0.700.63	0.917 44	1.0014	0.1
2.5963	3.6000	2.0918	1.1	0.700 20	0.323 3/	1.0051	0.9
2.7043	3./410	2.1484	0.3	0.720 39	0.952 0/	1.0120	-2.0
2.7852	3.8456	2.1898	0.0	0.727 20	0.953 10	1.0122	-2.1
2.7854	3.8442	2.1882	-1./	1.05/4	1,420 2	1.1004	-2.1
3.0128	4.1329	2,2989	-2.5	1.062.3	1.431 ð 1.436 9	1.1091	-2.2
3.1284	4.2798	2.3548	0.2	1.005 3	1.4368	1.1910	-2.0
3.2115	4.3830	2,3922	0.7	1.09//	1.482 4	1,2077	-3.6
3.201/	4.400/	2.4203	-1.5	1 104 1	1 6 7 5 7	1.2020	-1./
3.3340	4.5339	2.4452	1.1	1.134 1	1.023 3	1 2067	-0.9
3.4301	4.0010	2.4903	1./	1.230 9	1.//4/	1.5207	-2.1

m, ReCl ₃	m, standard	φ, ReCl₃	$10^{3}\Delta\phi$	m, ReCl ₃	m, standard	φ, ReCl₃	10³Δφ
1.303 3	1.784 3	1.3297	-1.8	0.987 40	2.468 2	1.1518	1.0
1.409 5	1.941 1	1.3952	-0.7	1.120 5	2.944 3	1.2265	-0.4
1.476 5	2.040 2	1.4372	0.0	1.171 6	3.140 6	1.2584	1.3
1.479 6	2.044 7	1.4391	0.0	1.262 6	3.495 0	1.3133	1.7
1.707.3	2.3784	1.5819	-0.1	1.2/3 4	3.538 8	1.3203	2.1
1,794 6	2.506 5	1.6379	0.3	1.367 5	4.006 6	1.3922	5.7
1 821 4	2 5 4 4 2	1.6537	-0.8	1.550 0	4.020 2	1.4052*	0,0
1.942 1	2.719 4	1.7307	-0.8		NdCl ₃ vs.	CaCl ₂	
1.949 3	2.727 4	1.7327	-3.3	1.1205	1.5206	1.2264	-0.5
2.039 6	2.862 1	1.7949	1.4	1.1/16	1.5958	1.2567	-0.4
2.145 5	3.009 7	1.8577	-2.9	1.2020	1.7294	1.3107	-1.0
2.231 1	3.130 7	1.9106	-3.8	1.3875	1.9152	1.3888	0.0
2.236 3	3.140 1	1.9160	-1./	1.5106	2.0956	1,4642	-1.9
2.349 4	3.299 9	1.9865	-1.5	1.5300	2.1264	1.4787	0.4
2 393 3	3 363 2	2,0008	0.3	1.6309	2.2734	1.5409	-2.1
2.412 1	3.389 9	2.0273	0.8	1.7171	2.4010	1.5969	-1.8
2.433 7	3.419 6	2.0400	0.3	1.8980	2.6668	1.7145	-1.9
2.510 6	3.527 3	2.0874	1.2	1.9974	2.8138	1.7813	0.0
2.564 1	3.600 5	2.1186	0.5	2.0408	2.8760	1.0005	0.9
2.613 4	3.668 5	2.1480	0.7	2 2303	3 1 5 0 1	1 9317	-0.4
2.658 0	3.730 7	2.1752	2.0	2.2712	3.2102	1.9595	1.2
2.6670	3.742 8	2.1803	1.8	2.3748	3.3570	2.0245	0.4
2.718.8	3.812.4	2 2093	0.9	2.5459	3.5977	2.1308	-0.1
2.742 5	3.844 7	2.2230	1.1	2.5472	3.6000	2.1321	0.4
2.824 8	3.954 6	2.2682	0.0	2.7218	3.8442	2.2394	2.0
2.835 1	3.968 9	2.2744	0.5	2.7237	3.8456	2.2392	0.8
2.908 1	4.066 5	2.3145	0.5	2.7042	3.9270 4.0740	2.2730	
2.920 5	4.082 3	2.3205	-0.2	3.0418	4.2798	2.4218	1.7
3.0027	4.191 0	2.3642	-0.3	3.0588	4.3003	2.4287	-0.7
31109	4.222 0	2.3767	-1.1	3.1194	4.3830	2,4629	0.8
3.119.4	4.341 9	2.4223	-2.5	3.2564	4.5632	2.5323	-1.5
3.225 5	4.482 5	2.4778	0.3	3.3438	4.6816	2.5791	1.2
3.241 3	4.502 6	2.4851	0.0	3.3599	4.7000	2.5843	-1.6
3.3077	4.588 2	2.5170	0.1	3.5003	4.8855	2.6551	-1.4
3.331 2	4.616 9	2.5267	-1.3	3.6288	5.0538	2.7122	-1.2
3.404 9	4.711 9	2.5614	-0.5	3.6637	5.1016	2.7298	0.6
3.434 9	4./512	2.5760	0.5	3.7180	5.1742	2.7552	1.7
3 587 1	4.918 5	2.6340	-0.7	3.7833	5.2607	2.7843	2.1
3.762 3	5.167 0	2.7163	1.0	3.8583	5.3567	2.8139	-0.7
3.777 3	5.186 9	2.7232	1,7	3.9031	5.4180	2.8346	0.8
3.896 9	5.336 2	2.7683	-1.4	3.9286	5.4503	2.8440	-0.7
				3.9307	5.4550 See Ch. (free	2.0440	-0.8
	NdCl ₃ (fro	om emt)			SmCl ₃ (fro	m emt)	
0.005 00		0.8679	1.5	0.005 00		0.8679	0.7
0.010 00	—	0.8382	1.7	0.010 00		0.8389	0.9
0.015 00	_	0.8207	1.2	0.015.00	_	0.8221	0.8
0.025.00		0.7989	-0.9	0.025 00		0.8022	0.0
0.030 00		0.7913	-2.4	0.030 00	_	0.7956	-0.7
0.033 52	_	0.7866	-3.6	0.035 00	<u></u>	0.7902	-1.6
				0.037 46		0.7879	-2.1
	NdCl ₃ vs	s. KCI			SmCl ₃ v	s. KCI	
0.107 20	0.182 76	0.7792	1.6	0.106 86	0.182 76	0.7817	0.9
0.120 34	0.206 04	0.7807	1.2	0.120 04	0.206 04	0.7826	-0.1
0.174 20	0.305 33	0.7935	2.1	0.145 78	0.253 59	0.7900	2.2
U.238 /3 0 201 20	0.429 47	0.0103	0.1	0.23781	0.429 47	0.8134	-0.4
0.389 29	0.536 89	0.8623	0.5 _1 3	0.290 02	0.336 89	0.8318	0.3
0.437 89	0.860 88	0.8816	-1.3	0.435.34	0.860 88	0.8867	-1.1
0.487 13	0.979 20	0.9018	-1.4	0.483 91	0.979 20	0.9078	-0.7
0.693 74	1.531 4	0.9967	0.3	0.604 40	1.294 2	0.9635	0.4
0.833 17	1.954 2	1.0677	0.3	0.688 54	1.531 4	1.0043	0.4
0.849 39	2.004 4	1.0754	-0.5	0.767 02	1.763 6	1.0426	-1.2
0.935 42	2.288 2	1.1221	0.0	0.827 30	1.954 2	1.0753	-0.2

Table III. Continued

m, ReCl ₃	m, standard	ϕ , ReCl ₃	10³Δφ	m, ReCl ₃	m, standard	ϕ , ReCl ₃	10³Δφ
0.843 12	2.004 4	1.0834	-0.5	1.014 4	2.620 3	1.1950	2.3
0.933 76	2.307 3	1.1340	0.5	1.092 5	2.901 7	1.2383	-0.9
0.980 04	2.468 2	1.1605	0.9	1.122 6	3.020 6	1.2587	1.3
1.104 6	2.914 1	1.2304	-1.3	1.206 9	3,345 0	1.3090	-0.2
1.223 4	3.375 7	1.3044	1.4	1.209 9	3.355 9	1.3104	-0.6
1.299 4	3.678 8	1.3509	1.1	1.268 3	3.592 7	1.3480	0.5
1.392 8	4.068 6	1.4112	3.0	1.276 7	3.626 4	1.3531	0.3
				1.345 3	3.911 6	1.3976	1.2
	SmCl ₃ vs.	CaCl ₂		1.353 9	3.948 3	1.4034	1.5
1 2312	1 6974	1 3078	0.0	1.423 4	4.246 0	1.4493	2.6
1 4996	2 0956	1 4749	-14	1.435 8	4.300 7	1.4579	3.2
1 6191	2 2734	1 5521	_1.4	1.523 1	4.689 3	1.5176	5.9
1 7048	2 4010	1.6084	_1 1	1.530 2	4.719 5	1.5218	5.4
1 99/7	2.4010	1,0004	_0.9				
1 08/3	2,0000	1 7930	-0.7		EuCí, vs.	CaC1,	
2 0 2 6 7	2,0130	1.7550	-0.7	0 41 7 31	0 534 86	0.8861	-0.7
2.0207	2.0700	1.0211	-0.5	0.417 31	0.554 80	0.0001	-0.7
2.00034	2.9152	1.0309	-0.3	0.438 33	0.391 87	0.9045	-0.2
2.1700	2 2102	1.9104	0.3	0.530 //	0.030 71	0.9303	-0.5
2.2000	3.2102	1.9722	1.0	0.556 41	0.702 22	0.9413	0.9
2.2001	3.2320	1.9921	1.0	0.028.00	0.020 21	0.9630	-0.5
2.40/8	3.5112	2.1067	0.0	0.642 63	0.84/ 61	0.9897	-0.7
2.5308	3.6000	2.1459	0.0	0.720 21	0.958 68	1.0296	-0.1
2.54/8	3.6241	2.1567	0.2	0.745 37	0.993 95	1.0415	-1.3
2.6298	3.7410	2.2093	2.6	0.822.67	1.106 /	1.0840	-0.2
2.7058	3.8442	2.2526	0.2	0.830 43	1,11/5	1.0876	-0.8
2.7080	3.8456	2.2522	-1.5	0.910 87	1.235 6	1.1328	-0.2
2.9185	4.1329	2.3/32	-2.3	0.934 53	1.270 7	1.1467	0.2
3.0250	4.2798	2.4353	0.9	0.999 37	1.365 7	1.1832	-0.7
3.1027	4.3830	2.4761	0.1	1.014 4	1.388 9	1.1931	0.4
3.1669	4.4667	2.5080	-1.7	1.092 5	1.504 4	1.2389	-0.3
3.3250	4.6792	2.5913	1.6	1.122 6	1.550 5	1.2585	1.1
3.3712	4.7389	2.6129	0.4	1.199 5	1.662 9	1.3028	-1.8
3.4587	4.8530	2.6541	-0.7	1.206 9	1.675 7	1.3093	0.1
3.5438	4.9667	2.6958	0.6	1.209 9	1.680 0	1.3110	-0.1
3.6414	5.0952	2.7407	-0.5	1.235 7	1.717 4	1.3256	-1.5
				1.268 3	1.767 9	1.3479	0.3
	EuCl ₃ (fro	m emf)		1.276 7	1.780 5	1.3532	0.3
0.005 00		0.8667	0.5	1.282 0	1.786 2	1.3540	-2.2
0.010 00	_	0.8374	0.4	1.332 3	1.861 7	1.3859	-2.3
0.015 00		0.8207	0.4	1. 3 45 3	1.883 5	1.3967	0.3
0.020 00		0.8096	0.3	1.353 9	1.897 3	1.4032	1.2
0.025 00	-	0.8015	0.0	1.377 1	1.929 1	1.4147	-2.2
0.030 00	—	0.7954	-0.3	1.423 4	2.001 1	1.4472	0.5
0.035 00	—	0.7906	-0.8	1.425 1	2.001 5	1.4459	-1.9
0.035 32		0.7903	-0.8	1.435 8	2,020 1	1.4556	0.9
				1.470 4	2.069 5	1.4753	-2.0
	EuCl ₃ vs.	. KCI		1.523 1	2.151 5	1.5129	1.1
0.165 25	0.290 47	0.7964	1.0	1.530 2	2.161 6	1.5169	0.5
0.233 03	0.422 17	0.8162	-0.1	1.537 2	2.170 0	1.5192	-1.8
0.263 49	0.483 79	0.8258	-1.0	1.575 1	2.226 5	1.5437	-2.2
0.350 65	0.671 71	0.8594	-0.2	1.643 9	2.329 9	1.5896	-1.9
0.374 97	0.727 66	0.8703	1.0	1.674 3	2.375 7	1.6101	-1.6
0.417 31	0.824 50	0.8859	-0.9	1,743 5	2.479 3	1.6564	-1.4
0.447 01	0.897 69	0.9006	1.1	1.789 5	2.548 1	1.6874	-1.2
0.458 93	0.925 25	0.9042	-0.4	1.863 9	2,658 9	1.7373	-1.0
0.465 44	0.942 67	0.9084	0.9	1.891 9	2,700 5	1.7562	-0.9
0.514 80	1.067.3	0.9306	1.1	1.978 7	2.828 8	1.8142	-0.9
0.516 73	1.072.3	0.9315	1.1	2.008 9	2.873 6	1.8347	-0.5
0.530 77	1,106.9	0.9364	-0.4	2.085.4	2 986 5	1 8863	0.0
0.538 41	1.127 9	0.9408	0.5	2.132 9	3.055 9	1.9177	0.2
0.628 86	1.373.3	0.9837	0.1	2.219 7	3,181.9	1.9747	0.0
0.642.63	1.412 1	0.9903	0.0	2.267.9	3.251.8	2.0064	0.0
0.720 13	1.639.5	1.0299	0.0	2.358 1	3,382 1	2.0654	0.2
0.745 37	1.714 5	1.0420	_0.5	2.393 3	3,432,1	2.0876	0.0
0.822.67	1.958 9	1.0840	_0.0	2 4 7 2 0	3 543 9	21374	0.7
0.830 43	1.983 5	1.0880	-0.4	2.513.2	3 602 1	2.1632	0.0
0.910 87	2.251 3	1,1328	_0.7 _0.7	2.585 5	3 704 7	2,2089	0.0 0 R
0 934 53	2 334 7	1 1 4 7 3	_0.5 0.8	2 611 8	3 741 0	2 2245	0.0
0,999 37	2,558 5	1.1824	-1.5	2.689 7	3.849 9	2.2720	0.4

Table III. Continued

m, ReCl ₃	m, standard	ϕ , ReCl ₃	$10^{3}\Delta\phi$	m, ReCl_3	m, standard	ϕ , ReCl $_3$	$10^{3}\Delta\phi$
2.716 9	3.887 1	2.2877	-0.1	3.1921	4.5788	2.5988	-0.5
2.796 1	3.996 1	2,3341	 0.6	3.2655	4.6792	2.6386	0.8
2.826 2	4.037 9	2.3521	-0.2	3.3106	4.7389	2.6607	-0.3
2.904 1	4.144 3	2.3966	-0.3	3.3943	4.8530	2.7045	1.0
2.997 3	4.271 1	2.4490	-0.1	3.4799	4.9667	2.7453	-0.8
3.105 4	4.416 9	2.5077	0.1	3.5898	5.1172	2,8005	0.1
3.145 3	4.470 0	2.5285	-0.2		T I OI <i>I</i>		
3.211 7	4.558 5	2.5629	-0.4		I DCI ₃ (fro	m emt)	
3.237 5	4.593 2	2.5765	0.0	0.005 00		0.8702	0.2
3.345 9	4.736 5	2.6303	-0.7	0.010 00	_	0.8406	-1.1
3.373 2	4.774 1	2.6452	0.6	0.015 00		0.8265	1.1
3.407 1	4.819 6	2.6623	1.1	0.020 00	—	0.8156	1.0
3.431 8	4.851 3	2.6733	0.1	0.025 00	_	0.8075	0.6
3.449 9	4.875 1	2.6818	-0.2	0.030 00		0.8005	-0.6
3.499 4	4.940 8	2.7056	-0.3		TbCl, vs.	. KCI	
3.517 3	4.964 8	2.7144	-0.1	0 1 3 4 6 5	0 233 33	0 7882	-32
3.583 9	5.054 0	2.7464	0.0	0.272 43	0.506.27	0.8355	1.8
	GdCl ₃ (fro	om emf)		0.454 62	0.925 81	0.9133	3.7
0.005 00		0.8684	1.9	0.498 43	1.033 0	0.9301	0.0
0.010 00		0.8394	1.8	0.745 27	1.732 9	1.0537	-4.5
0.015 00		0.8226	1.4	0.837 59	2.040 9	1.1113	0.4
0.020 00		0.8110	0.7	0.841 95	2.060 3	1.1165	3.1
0.025 00		0.8024	-0.3	0.874 31	2.160 3	1.1300	-2.4
0.030 00		0.7955	-1.5	0.909 90	2.292 5	1.1559	2.3
0.035 00		0.7899	-2.9	0.921 33	2.324 9	1.1586	-1.9
0.035 15		0.7898	-2.9	0.922 08	2.329 4	1.1600	-0.9
				1.056 5	2.820 9	1.2420	-1.8
	Gaci3 v	S. KUI		1.061 1	2.839 3	1.2453	-1.4
0.106 32	0.182 76	0.7856	1.4	1.089 3	2.951 1	1.2648	0.3
0.119 44	0.206 04	0.7865	0.1	1.099 1	2.986 6	1.2699	-0.9
0.145 13	0.253 59	0.7936	1.5	1.186 7	3.334 5	1.3267	-0.6
0.172 58	0.305 33	0.8009	1.6	1.188 4	3.340 5	1.3274	-1.0
0.236 25	0.429 4 /	0.8188	-0.6	1.290 2	3.766 1	1.3967	1.0
0.287 79	0.536 89	0.8382	0.4	1.4/3 9	4.5/8 2	1.5256	5.6
0.431 48	0.860 88	0.8947	-1.6	1.480 1	4.6072	1.5303	6.0
0.597 30	1.294 2	0.9749	1.0		TbC1, vs.	CaC1,	
0.000 14	1,551 4	1.0167	0.5	1.0565	1.4735	1.2442	0.4
0.756.01	2 004 4	1.0550	-2.0	1.0611	1.4809	1.2475	0.8
0.001 01	2 307 3	1 1507	1.2	1.1867	1.6716	1.3269	-0.5
0.966 12	2.307 3	1 1 7 7 2	0.7	1.1884	1.6741	1.3279	-0.6
1 088 2	2 914 1	1 2489	-17	1.2902	1.8315	1.3965	0.9
1.204 7	3.375 7	1.3246	0.9	1.4370	2.0543	1.4925	-2.3
1.279 2	3.678 8	1.3722	0.6	1.4739	2.1141	1.5212	1.2
1.371 0	4.068 6	1.4336	2.0	1.4801	2.1231	1.5249	0.6
1.427 2	4.315 2	1.4723	3.5	1.5134	2.1719	1.5452	-2.0
1.524 0	4.752 0	1.5402	6.6	1.6474	2.3784	1.6394	-0.9
	CdCl us	C2C1		1.7470	2.5311	1.7097	-0.4
1 4070				1.7533	2.5442	1.7179	3.5
1.42/2	2.0222	1.4668	-2.1	1.8715	2.7194	1.7960	-1.6
1.5240	2.1694	1.5317	-1.8	1.8785	2.7274	1.7980	-4.5
1.5508	2.2000	1.5459	-5.7	1.9595	2.8537	1.8591	-0.4
1.0410	2.3403	1.0122	-0.9	1.9651	2.8621	1.8630	-0.5
1.7565	2.4940	1.0701	-1.0	2.0039	3.0097	1.9311	-1./
1 9183	2,0055	1.8025	-1.5	2.1455	3.1307	2 0578	-2.0
2 0070	2 8984	1.8632	0.5	2 3067	3 3 7 3 9	2.0070	-0.4
2.1498	3.1098	1.9603	0.4	2 3177	3 3899	2 1098	1 1
2.1778	3.1501	1.9782	-0.5	2.4111	3.5273	2 1 7 3 5	1.1
2.2474	3.2526	2.0255	0.0	2.4255	3,5465	2.1812	-0.6
2.3188	3.3570	2.0734	0.3	2.5082	3.6685	2.2381	1.2
2.4859	3.5977	2,1823	-0.2	2.5251	3.6919	2.2480	0.0
2.5856	3.7410	2.2470	0.9	2.6303	3.8447	2.3178	1.3
2.7176	3.9278	2.3296	1.3	2.7177	3.9689	2.3727	0.6
2.8124	4.0574	2.3838	-1.7	2.7867	4.0665	2.4153	0.4
2.8226	4.0740	2.3924	0.8	2.7983	4.0823	2.4219	-0.2
2.9872	4.3003	2.4870	-0.2	2.8757	4.1910	2.4686	-0.2
3.0349	4.3646	2.5127	-1.1	2.8978	4.2220	2.4819	-0.1
211/32	4.5632	2.5932	0.4	2.9774	4.3322	2.5279	-0.7

Table III. Continued

	m, ReCl ₃	m, standard	φ, ReCl₃ ¹	$10^{3}\Delta\phi$	m, ReCl ₃	m, standard	φ, ReCl₃	$10^{3}\Delta\phi$
	2.9852	4.3419	2.5312	-1.8	3.6196	5.2607	2.9102	-1.5
	3.0857	4.4825	2,5900	0.3	3.6302	5.2766	2,9165	-0.6
	3.1006	4.5026	2,5979	-0.1				0.0
	3.1629	4.5882	2.6322	0.4		HoCl ₃ (fro	m emf)	
•	3.1846	4 6 1 6 9	2 6430	-0.5	0.005 00		0.8716	-2.3
	3 2541	4 7119	2.6801	0.0	0.010 00		0.8444	-0.7
	3 4 0 5 7	4.7115	2,0001	1.0	0.015.00		0.8287	0.4
	3 4 2 4 5	4.9103	2.7505	1.0	0.020.00		0.8180	1.0
	3 5733	51462	2.7070	0.1	0.025.00		0.0100	1.0
	5.5755	5.1402	2.6405	-0.4	0.020.00		0.0101	1.2
		DyCL (fro	m emf)		0.030.00		0.0030	0.9
	0.005.00				0.034 23		0.7994	0.4
	0.005 00	—	0.8/14	-1.2		HoCl₁ vs	. KCI	
	0.010 00		0.8435	-0.8	0 1 24 05	0 222 22	0 701 7	2 7
	0.015 00	—	0.8284	0.4	0.134 03	0.233 33	0.7517	-2.7
	0.020 00		0.8176	0.6	0.271.07	0.306 27	0.0370	2.7
	0.025 00	—	0.8102	1.1	0.370 13	0.729 20	0.8835	2.4
	0.030 00	—	0.8028	-0.3	0.422 15	0.852 14	0.9051	0.9
					0.453 07	0.925 81	0.9165	-1.9
		DyCí₃ vs	. KCI		0.454 85	0.930 41	0.9174	-1.8
	0.106 05	0.182 76	0.7876	0.3	0.580 //	1.269 1	0.9829	2.6
	0.118 92	0.206 04	0.7900	0.6	0.612 67	1.355 3	0.9962	-0.5
	0.144 90	0.253 59	0.7948	0.0	0.671 00	1.528 4	1.0285	1.1
	0.172 54	0.305 33	0.8011	-1.1	0.679 89	1.556 0	1.0338	1.7
	0.235 34	0.429 47	0.8220	-0.4	0.685 57	1.572 8	1.0366	1.4
	0.381 51	0 748 56	0.8799	-0.5	0.704 68	1.629 7	1.0460	0.4
	0 476 09	0 979 20	0.9227	-0.5	0.708 81	1.643 3	1.0489	1.0
	0 592 84	1 294 2	0.9823	1.6	0.833 67	2.045 1	1.1189	0.5
	0.675.23	1 531 /	1 02/1	0.2	0.838 05	2.060 3	1.1217	0.7
	0 750 24	1.331 4	1.0659	0.2	0.905 03	2.292 5	1.1621	1.4
	0.825.54	2 004 4	1 1065	1.5	0.989 38	2,597 7	1.2139	1.5
	0.023.34	23073	1.1600	-1.5	1.024 5	2.722 3	1.2327	-1.8
	0.912.60	2.307 3	1.1000	0.4	1.024 6	2,724 9	1.2338	-0.7
	10781	2.400 2	1.1070	0.0	1.027 3	2.736 1	1.2360	-0.2
	1.0781	2.514 1	1.2000	-1.6	1,146.9	3 1 9 6 9	1 3107	_2 7
	1.195 0	3.3757	1,3370	0.6	1.150 7	3 21 7 9	1 3157	_0.1
	1.200 1	3.0/0 8	1,3864	0.6	1.158.9	3 251 5	1 3214	0.1
	1.336 1	4.000 0	1,4494	2.3	1.247 7	3.617.1	1 3806	0.1
	1.411 9	4,315 2	1.4005	2.7	1.253.8	3.640 1	1 3836	_1 1
	1.507 0	4.752 0	1.5576	5.4	1.353 1	4 083 5	1 4586	-1.1
		Duch	0-01		1 370 4	4 150 3	1 4669	2.0
		DyCl ₃ vs.			1 407 4	4 321 1	1 4954	2.0
	1.4119	2.0222	1.4827	-2.9	1 41 7 1	4.363.7	1.5019	4.7
	1.5070	2.1694	1.5490	-3.2	1 41 7 4	4,365,3	1.5019	4.5
	1.5322	2.2066	1.5647	-5.2	1 / 1 9 7	4.303 3	1.5022	4.4 5 0
	1.6208	2.3485	1.6328	-0.1	1.4157	4.379.3	1.3032	5.9
	1.7163	2.4948	1.6998	-1.6		HoCl ₃ vs.	CaCl ₂	
	1.7906	2.6099	1.7539	-1.1	0.370 13	0.479 77	0.8841	3.0
	1.8918	2,7661	1.8277	-0.4	0.422 15	0.549 99	0.9041	-0.1
	1.9769	2.8984	1.8915	1.8	0.580 77	0.775 44	0.9826	2.2
	2.1008	3.0864	1.9803	1.3	0.612 67	0.817 90	0.9937	-3.0
	2.1156	3,1098	1.9920	2.4	0.645 47	0.869 48	1.0168	3.0
	2.1446	3.1501	2.0089	-1.5	0.671 00	0.903 73	1.0262	-1.2
	2.2818	3.3570	2 1071	-0.7	0.679 89	0.917 44	1.0320	-0.2
	2.3840	3.5112	2 1807	1.6	0.685 57	0 925 97	1 0354	0.1
	2.4438	3 5977	2 2199	-0.5	0.704 68	0.952.07	1 0431	-25
	2 6312	3 8713	2 3453	_1 1	1 020 9	1 425 2	1 2288	-2.5
	2 6693	3 9278	2.3433	-1.1	1 023 1	1 4 29 1	1 2309	-3.4
	2 7592	4 0574	2.3717	0.3	1 024 5	1 4 3 1 8	1 2324	-2.7
	2 7706	4.0740	2.4250	0.4	1.058.5	1 482 4	1.2524	-2.0
	2,9300	4,3003	2.4070	0 1	1.060 1	1 487 7	1 2568	03
	2.9765	4 3646	2,5535	_1 5	1 146 9	1 617 0	1 3094	-0.3
	3.1164	4 5632	2.5020	-1.5	1 150 7	1 625 2	1 31 37	-4.0
	3 1 2 9 2	4 5788	2.0401	_1 6	1 247 7	1 77/ 7	1 3770	-2.2
	3 2003	4.5700	2.0010	-1.5	1 252 0	1.//4 /	1.3//3	-2.7
	3 2020	4 6816	2.0323	-0.2	1 252 1	1./04 3	1,3022	-2.5
	3 2434	1 7380	2.0300	-0.2	1 2 7 0 4	1.341 1	1.4004	0.5
	3 3247	4.7509	2.7105	~0.5	1.370 4	1.30/4	1.4047	-0.2
	3 4074	4.0000	2.7011	0.7	1,4074	2.020 1	1,430/	0.0
	3 4975	5 0052	2.0030	~0.2	1.417 /	2.044 /	1.4990	0.5
	3.5562	5.0332	2,0004	5.0	16336	2.0343	1.5043	U.8 1 1
	0.0002	J. 1 / 7 C	2,0000	0.4	1.000 0	2.3/04	1.0002	1.1

Table	EHI.	Continued

	m, ReCl ₃	m, standard	φ, R e Cl ₃	$10^{3}\Delta\phi$	m, ReCl ₃	m, standard	ϕ , ReCl ₃	$10^{3}\Delta\phi$
	1.645 9	2.397 2	1.6618	0.8	1.185 2	3.355 9	1.3377	-0.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.731 4	2.531 1	1.7251	1.9	1.241 7	3.592 7	1.3769	0.0
$ 1 3661 1 2.727 4 18119^{\circ} - 6.4 1.315 9 3.9116 1.4288 1.0 2.745 9 3.009 7 1.9481 - 5.6 1.324 1 3.948 3 1.4350 1.4 2.124 5 3.130 7 2.0056 -4.7 1.391 3 4.246 0 1.4828 2.1 2.281 9 3.373 9 2.1254 -0.2 1.4871 4.689 3 1.5548 5.1 2.283 3 3.369 9 2.1352 0.2 1.4871 4.689 3 1.5548 5.1 2.382 3 3.577 2 2.199 0 .7 -7 -7 2.493 6 3.619 9 2.756 0 -1.1 CFGL 5.81 ^{\circ} CGL, 5.81 ^{\circ} CGL, 5.81 ^{\circ} CGL, 5.81 ^{\circ} CGL, 5.84 ^{\circ} CGL,$	1.857 1	2,719 4	1.8099	-5.3	1.249 7	3.626 4	1.3824	0.1
$ \begin{array}{c} 2.048 & 9 & 3.009 & 7 & 1.9481 & -5.6 & 1.324 1 & 3.948 & 1.4350 & 1.4 \\ 2.124 & 5 & 3.130 & 7 & 2.0065 & -4.7 & 1.391 3 & 4.246 0 & 1.4828 & 2.1 \\ 2.221 0 & 3.279 & 7 & 2.0792 & -2.3 & 1.403 3 & 4.300 & 7 & 1.491 & 2.6 \\ 2.292 & 3.389 & 9 & 2.1322 & 0.2 & 1.493 & 4.719 & 1.5544 & 5.6 \\ 2.292 & 3.389 & 9 & 2.1322 & 0.2 & 1.493 & 4.719 & 1.5544 & 5.6 \\ 2.292 & 3.389 & 9 & 2.1322 & 0.2 & 1.493 & 4.719 & 1.5541 & 5.6 \\ 2.293 & 3.565 & 2.2070 & -1.1 & Fr(1, Set1vs CaCl, & -2.493 & 3.665 & 2.2070 & -1.1 & -2.637 & 3.665 & 2.409 & 0.9 & 0.433 7 & 0.918 & 7 & 0.9148 & 0.2 \\ 2.595 & 3.844 & 7 & 2.2490 & 0.9 & 0.433 7 & 0.993 & 7 & 0.9148 & 0.2 \\ 2.595 & 3.844 & 7 & 2.4490 & 2.7 & 0.623 47 & 0.990 71 & 0.9478 & -0.5 \\ 2.765 & 9 & 4.066 & 2.4512 & 1.7 & 0.620 19 & 0.892 10 & 0.993 & 2.6 \\ 2.758 & 4.066 & 5 & 2.4512 & 1.7 & 0.620 19 & 0.893 10 & 0.993 & -0.4 \\ 2.831 & 4.191 & 0 & 2.5073 & 1.3 & 0.733 81 & 0.993 95 & 1.0579 & -0.4 \\ 3.032 & 4.482 & 2 & 2.5695 & 0.1 & 0.816 65 & 1.117 & 1.1018 & -0.3 \\ 2.293 & 4 & 4.322 & 2.5695 & 0.1 & 0.816 65 & 1.117 & 1.1018 & -0.3 \\ 3.027 & 4.482 & 2 & 2.6595 & 0.1 & 0.816 65 & 1.117 & 1.1028 & -0.4 \\ 3.032 & 4.482 & 2 & 2.6595 & 0.1 & 0.816 65 & 1.117 & 1.1028 & -0.3 \\ 3.106 & 4.588 & 2 & 2.6800 & -0.2 & 0.995 17 & 1.1364 & 1.2632 & -0.5 \\ 3.106 & 4.588 & 2 & 2.6800 & -0.2 & 0.995 17 & 1.1364 & 1.2632 & -0.5 \\ 3.106 & 4.588 & 2 & 2.6800 & -0.2 & 0.995 17 & 1.1364 & 1.2632 & -0.5 \\ 3.107 & 4.492 & 7 & 2.8244^{3} & -1.4 & 1.1076 & 1.560 & 1.1360 & -1.2 \\ 3.205 & 4.712 & 2.7475 & -1.8 & 1.100 & 1.550 & 1.2830 & -1.4 \\ 3.205 & 4.712 & 2.2447 & -1.4 & 1.1324 & 1.4897 & 1.4364 & -2.2 \\ 3.370 & 4.957 & 7 & 2.8254^{3} & -8.8 & 1.185 & 1.660 & 1.3844 & -2 \\ 3.370 & 4.957 & 7 & 2.8254^{3} & -8.8 & 1.185 & 1.665 & 1.1374 & -1.3543 & -0.7 \\ 3.527 & 5.166 & 9 & 2.3144 & 1.1 & 1.241 & 7 & 1.767 & 9 & 1.3766 & -1.7 \\ 0.010 & - & 0.8440 & 0.9 & 1.359 & 1.865 & 7 & 1.3306 & -1.2 \\ 0.350 & - & 0.8166 & -1.7 & 1.4631 & 2.221 & 1.4866 & 0.6 \\ 0.350 & 0 & - & 0.8166 & -1.7 & 1.4631 & 2.229 & 1.630$	1.864 1	2,727 4	1.8119 ^b	8.4	1.315 9	3.911 6	1.4288	1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.045 9	3.009 7	1.9481	5.6	1.324 1	3.948 3	1.4350	1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.124 5	3.130 7	2.0065	4.7	1.391 3	4,246 0	1.4828	2.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.221 0	3.2797	2.0792	-2.3	1.403 3	4.300 7	1.4917	2.6
$ \begin{array}{c} 2.292 & 3.389 & 9. & 2.132 \\ 2.383 & 2.383 & 2.382 \\ 2.383 & 2.387 & 2.1989 \\ 0.7 \\ 2.397 & 3.3646 & 5. & 2.2660 \\ 1.1 & 0.412 & 94 \\ 0.594 & 6.0895 \\ 0.894 & 0.594 & 6.0895 \\ 0.894 & 0.594 & 6.0895 \\ 0.894 & 0.998 & 0.79 \\ 0.524 & 27 \\ 0.690 & 10. & 0.479 \\ 0.620 & 10. & 0.489 \\ 0.610 & 0.993 & 1.0657 \\ 0.180 & 1.1270 \\ 0.110 & 0.1250 \\ 0.120 & 0.110 \\ 0.120 & 0.120 \\ 0.110 & 0.120 \\ 0.$	2.281 9	3.373 9	2.1254	-0.2	1.487.1	4.689 3	1.5544	5.6
$ \begin{array}{c} 2.882 \\ 2.397 1 \\ 2.477 3 \\ 3.5665 \\ 2.2650 \\ -1.1 \\ 0.412 94 \\ 0.594 86 \\ 0.8954 \\ -0.5 \\ -0.591 40 \\ 0.591 40 \\$	2.292 3	3.389 9	2.1332	0.2	1.493 9	4.719 5	1.5588	5.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.383 2	3.527 3	2.1989	0.7				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.397 1	3.546 5	2.2070	-1.1		ErCl ₃ , Set 1 v	s. CaCl ₂	
	2.477 3	3.668 5	2.2660	1.1	0.412 94	0.534 86	0.8954	-0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.493 6	3.691 9	2.2764	0.1	0.453 74	0.591 87	0.9148	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.595 3	3.844 7	2.3490	1.9	0.524 27	0.690 71	0.9479	-0.5
$ \begin{array}{c} 2.745 9 \\ 2.756 9 \\ 2.756 9 \\ 4.082 3 \\ 2.4562 \\ 2.756 0 \\ 4.082 3 \\ 2.4512 \\ 2.852 6 \\ 4.082 3 \\ 2.4512 \\ 4.191 0 \\ 2.5073 \\ 4.191 0 \\ 2.5073 \\ 4.191 0 \\ 2.5073 \\ 4.332 2 \\ 2.5695 \\ 0.1 \\ 0.816 65 \\ 1.117 5 \\ 1.1057 \\ 1.1057 \\0.4 \\ 3.032 7 \\ 4.482 5 \\ 2.5333 \\0.9 \\ 0.815 7 \\ 1.235 6 \\ 1.127 0 \\ 4.522 \\ 4.432 5 \\ 2.5333 \\0.9 \\ 0.815 7 \\ 1.235 6 \\ 1.127 0 \\ 1.255 \\ 1.255 \\0.9 \\ 3.106 5 \\ 4.582 2 \\ 2.6800 \\0.2 \\ 0.995 77 \\ 1.388 9 \\ 1.215 \\ 1.365 7 \\ 1.255 \\0.9 \\ 3.106 5 \\ 4.588 2 \\ 2.6800 \\0.2 \\ 0.995 77 \\ 1.388 9 \\ 1.215 \\0.5 \\ 1.283 \\ $	2.683 0	3.975 0	2.4099	2.7	0.531 28	0.702 22	0.9539	2.0
$ \begin{array}{c} 2.756 & 9 & 4.082 & 3 & 2.4582 & 1.4 & 0.633 & 57 & 0.447 & 61 & 1.0039 & -0.4 \\ 2.881 & 4.191 & 0 & 2.5073 & 1.3 & 0.733 & 10 & 993 & 51 & 0.577 & -1.0 \\ 2.852 & 4.222 & 0 & 2.5212 & 1.2 & 0.809 & 32 & 1.106 & 7 & 1.1018 & -0.3 \\ 2.929 & 1.4332 & 2.5665 & 0.1 & 0.816 & 55 & 1.117 & 5 & 1.1059 & -0.5 \\ 2.936 & 4.341 & 9 & 2.5733 & -0.9 & 0.895 & 17 & 1.235 & 1.1527 & -0.4 \\ 3.046 & 4.502 & 6 & 2.6437 & 0.1 & 0.981 & 51 & 1.365 & 7 & 1.265 & 0.2 \\ 3.127 & 4.616 & 9 & 2.6914 & -1.4 & 1.071 & 5 & 1.5034 & 1.2652 & -0.9 \\ 3.127 & 4.616 & 9 & 2.6914 & -1.4 & 1.1071 & 51 & 5104 & 4 & 1.2632 & -0.5 \\ 3.127 & 4.616 & 9 & 2.6914 & -1.4 & 1.1071 & 51 & 504 & 1.2632 & -0.5 \\ 3.127 & 4.616 & 9 & 2.6914 & -1.4 & 1.1071 & 51 & 505 & 1.2839 & 1.4 \\ 3.220 & 4.751 & 2 & 2.7475 & -0.8 & 1.174 & 1.662 & 9 & 1.3304 & -1.2 \\ 3.355 & 4.751 & 2 & 2.7475 & -0.8 & 1.174 & 1.660 & 0 & 1.3383 & -0.4 \\ 3.511 & 3.5167 & 2.9105 & 0.3 & 1.2095 & 1.7174 & 1.3564 & -0.2 \\ 3.370 & 4.967 & 2.8254^{b} & -8.8 & 1.185 & 1.680 & 0 & 1.3383 & -0.4 \\ 5.168 & 9 & 2.9184 & 1.1 & 1.2417 & 1.7679 & 1.3267 & -0.1 \\ 5.688 & 7 & 5.433 & 7 & 3.0056 & 0.4 & 1.2497 & 1.786 & 1 & 1.3624 & -0.1 \\ & & & & & & & & & & & & & & & & & & $	2.745 9	4.066 5	2.4512	1.7	0.620 19	0.828 21	0.9968	-0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.756 9	4.082 3	2.4582	1.4	0.633 57	0.847 61	1.0039	-0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.831 3	4.191 0	2.5073	1.3	0.733 81	0.993 9 5	1.0579	-1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.852 6	4.222.0	2.5212	1.2	0.809 32	1.106 7	1.1018	-0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.929 1	4.332 2	2.5695	0.1	0.816 65	1.117 5	1.1059	-0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.936 4	4.341 9	2.5/33	-0.9	0.895 17	1.235 6	1.1527	-0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0327	4.462 3	2.0303	0.5	0.917 93	1.270 7	1.1674	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 106 5	4.502 0	2.6437	0.1	0.981 15	1.365 7	1.2052	-0.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,100 5	4.300 2	2.0000	-0.2	0.995 //	1.388 9	1.2155	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31935	4.010 9	2.0314	-1.4	1.071 5	1.504 4	1.2632	-0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 2 2 0 5	4.751.2	2.7510	- 0.8	1.100 4	1.550 5	1.2839	1.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 355 7	4 943 1	2.7473	-2.0	1,1/4 0	1.002 9	1.3304	-1.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.370 8	4.957 7	2.8254 ^b		1.102 3	1.6757	1.3300	-0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.511 3	5.167 0	2.9105	0.3	1 209 5	1,000 0	1.3503	-0.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.524 7	5.186 9	2.9184	1.1	1 241 7	1 767 9	1.3343	-0.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.698 7	5.433 7	3.0056	0.4	1 249 7	1 780 5	1 3824	-0.1
$\begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		ExCL (fre	am amf)		1.255 1	1 786 2	1 3830	-3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.005.00			0.1	1.302 9	1.861 7	1.4171	-1.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.005 00	—	0.8716	0.1	1.315 9	1.883 5	1.4279	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.010 00	_	0.8440	0.9	1.324 1	1.897 3	1.4348	1.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.010.00		0.8169	1.2	1.346 4	1.929 1	1.4469	-2.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.025 00	_	0.8084	0.5	1.391 3	2.001 1	1.4806	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.030 00		0.8016	-0.4	1.394 7	2.001 5	1.4774	-5.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.035 00	_	0.7960	1.7	1.403 3	2.020 1	1.4894	0.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.036 40		0.7945	-2.1	1.436 1	2.069 5	1.5105	-1.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ErCI Set	1 vr KCi		1.48/1	2.151 5	1.5495	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.164.00			0.1	1.493 9	2.161 6	1.5538	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.164 33	0.290 47	0.8009	0.1	1.500 3	2,1700	1.5566	-1./
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.231 30	0.422 17	0.8220	0.3	1.536 /	2,226 5	1.5823	-2.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.201 41	0.403 79	0.8524	-0.8	1.602 4	2.329 9	1.6307	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 371 47	0.727.66	0.8785	0.8	1.697.7	2.3758	1.0512	-5.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.412 94	0.824 50	0.8953	-0.7	1 741 5	2 5 4 8 1	1 7339	-0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.442 29	0.897 69	0.9102	0.8	1 812 5	2 658 9	1 7866	-0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.453 74	0.925 25	0.9145	-0.1	1.839.0	2,700 5	1 8067	-0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.460 35	0.942 67	0.9185	0.7	1.921 3	2.828 8	1.8684	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.508 73	1.067 3	0.9417	0.9	1,950 6	2.873 6	1.8895	-0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.510 53	1.072 3	0.9428	1.1	2.022 9	2,986 5	1.9445	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.524 27	1.106 9	0.9480	-0.4	2.067 9	3.055 9	1.9780	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.531 28	1.127 9	0.9535	1.6	2.149 5	3.181 9	2.0391	0,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.620 19	1.373 3	0.9974	0.2	2.194 9	3.251 8	2.0731	0.3
$ 0.709 33 \qquad 1.639 5 \qquad 1.0456 \qquad 0.3 \qquad 2.312 5 \qquad 3.432 1 \qquad 2.1606 \qquad 0.7 \\ 0.733 81 \qquad 1.714 5 \qquad 1.0584 \qquad -0.5 \qquad 2.386 3 \qquad 3.543 9 \qquad 2.2142 \qquad 0.2 \\ 0.809 32 \qquad 1.958 9 \qquad 1.1019 \qquad -0.2 \qquad 2.424 9 \qquad 3.602 1 \qquad 2.2420 \qquad -0.2 \\ 0.816 65 \qquad 1.983 5 \qquad 1.1063 \qquad -0.1 \qquad 2.492 7 \qquad 3.704 7 \qquad 2.2912 \qquad -0.1 \\ 0.895 17 \qquad 2.251 3 \qquad 1.1526 \qquad -0.5 \qquad 2.516 7 \qquad 3.741 0 \qquad 2.3085 \qquad 0.1 \\ 0.917 93 \qquad 2.334 7 \qquad 1.1681 \qquad 1.1 \qquad 2.589 7 \qquad 3.849 9 \qquad 2.3597 \qquad -0.8 \\ 0.981 15 \qquad 2.558 5 \qquad 1.2044 \qquad -1.7 \qquad 2.614 1 \qquad 3.887 1 \qquad 2.3777 \qquad -0.1 \\ 0.995 77 \qquad 2.620 3 \qquad 1.2174 \qquad 2.1 \qquad 2.687 5 \qquad 3.996 1 \qquad 2.4284 \qquad -0.8 \\ 1.071 5 \qquad 2.901 7 \qquad 1.2625 \qquad -1.2 \qquad 2.715 8 \qquad 4.037 9 \qquad 2.4477 \qquad -1.2 \\ 1.100 4 \qquad 3.020 6 \qquad 1.2841 \qquad 1.6 \qquad 2.787 3 \qquad 4.144 3 \qquad 2.4970 \qquad -0.9 \\ 1.182 3 \qquad 3.345 0 \qquad 1.3362 \qquad -0.5 \qquad 2.873 3 \qquad 4.271 1 \qquad 2.5547 \qquad -1.2 \\ $	0.633 57	1.412 1	1.0045	0.2	2.279 3	3.382 1	2.1368	1.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.709 33	1.639 5	1.0456	0.3	2.312 5	3.432 1	2.1606	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.733 81	1.714 5	1.0584	-0.5	2.386 3	3.543 9	2.2142	0.2
0.810 65 1.983 5 1.1063 -0.1 2.492 7 3.704 7 2.2912 -0.1 0.895 17 2.251 3 1.1526 -0.5 2.516 7 3.741 0 2.3085 0.1 0.917 93 2.334 7 1.1681 1.1 2.589 7 3.849 9 2.3597 -0.8 0.981 15 2.558 5 1.2044 -1.7 2.614 1 3.887 1 2.3777 -0.1 0.995 77 2.620 3 1.2174 2.1 2.687 5 3.996 1 2.4284 -0.8 1.071 5 2.901 7 1.2625 -1.2 2.715 8 4.037 9 2.4477 -1.2 1.100 4 3.020 6 1.2841 1.6 2.787 3 4.144 3 2.4970 -0.9 1.182 3 3.345 0 1.3362 -0.5 2.873 3 4.271 1 2.5547 -1.2	0.809 32	1.958 9	1.1019	-0.2	2.424 9	3.602 1	2.2420	-0.2
0.895 1/ 2.251 3 1.1526 -0.5 2.516 7 3.741 0 2.3085 0.1 0.917 93 2.334 7 1.1681 1.1 2.589 7 3.849 9 2.3597 -0.8 0.981 15 2.558 5 1.2044 -1.7 2.614 1 3.887 1 2.3777 -0.1 0.995 77 2.620 3 1.2174 2.1 2.687 5 3.996 1 2.4284 -0.8 1.071 5 2.901 7 1.2625 -1.2 2.715 8 4.037 9 2.4477 -1.2 1.100 4 3.020 6 1.2841 1.6 2.787 3 4.144 3 2.4970 -0.9 1.182 3 3.345 0 1.3362 -0.5 2.873 3 4.271 1 2.5547 -1.2	0.816.65	1.983 5	1.1063	-0.1	2.492 7	3.704 7	2.2912	-0.1
0.91795 2.3347 1.1681 1.1 2.5897 3.8499 2.3597 -0.8 0.98115 2.5585 1.2044 -1.7 2.6141 3.8871 2.3777 -0.1 0.99577 2.6203 1.2174 2.1 2.6875 3.9961 2.4284 -0.8 1.0715 2.9017 1.2625 -1.2 2.7158 4.0379 2.4477 -1.2 1.1004 3.0206 1.2841 1.6 2.7873 4.1443 2.4970 -0.9 1.1823 3.3450 1.3362 -0.5 2.8733 4.2711 2.5547 -1.2	0.017.02	2.251 3	1.1526	0.5	2.516 7	3.741 0	2.3085	0.1
0.991 15 2.350 5 1.2044 -1.7 2.614 1 3.887 1 2.377 -0.1 0.995 77 2.620 3 1.2174 2.1 2.687 5 3.996 1 2.4284 -0.8 1.071 5 2.901 7 1.2625 -1.2 2.715 8 4.037 9 2.4477 -1.2 1.100 4 3.020 6 1.2841 1.6 2.787 3 4.144 3 2.4970 -0.9 1.182 3 3.345 0 1.3362 -0.5 2.873 3 4.271 1 2.5547 -1.2	0.91/93	2.334 /	1,1081	1.1	2.589 /	3.849 9	2.3597	-0.8
1.071 5 2.901 7 1.2625 -1.2 2.715 8 4.037 9 2.4284 -0.8 1.100 4 3.020 6 1.2841 1.6 2.787 3 4.144 3 2.4970 -0.9 1.182 3 3.345 0 1.3362 -0.5 2.873 3 4.271 1 2.5547 -1.2	0.201 13	2.000 0	1.2044	-1./	2.014 1	3.88/1 2.006 1	2.3///	-0.1
1.1004 3.0206 1.2841 1.6 2.7873 4.1443 2.4970 -0.9 1.1823 3.3450 1.3362 -0.5 2.8733 4.2711 2.5547 -1.2	1 071 5	2 901 7	1 2625	2.1 _1 2	2.00/J 2715 9	2.330 I 1 037 0	2.4204 2 1177	-0.8
1.182 3 3.345 0 1.3362 -0.5 2.873 3 4.271 1 2.5547 -1.2	1.100 4	3.020 6	1.2841	-1.2	2 787 3	4.037 5	2.44//	-1.2 _0 0
	1.182 3	3.345 0	1.3362	0.5	2.873 3	4.271 1	2.5547	-1.2

Table III. Continued

.

m, ReCl ₃	m, standard	ϕ , ReCl ₃	$10^{3}\Delta\phi$	m, ReCl ₃	m, standard	ϕ , ReCl ₃	$10^{3}\Delta\phi$
2.973.2	4,416.9	2,6193	-2.2		TmCl, vs.	KCI	
3.009 1	4.470 0	2.6430	-1.7	0 1 2 4 8 5	0 2 1 8 5 1	0 79710	14.6
3 069 7	4 558 5	2 6815	-1.8	0.124 03	0.271.85	0.79987	14.0
3 093 5	4 593 2	2,6964	-1.8	0.13417	0.435.71	0.8212	1.0
3 1 9 2 1	4,736.5	2,7571	-2.2	0.230.93	0.674.53	0.8665	-0.2
3 21 7 5	4 774 1	2,7732	-1.5	0.349 21	0.677.83	0.8670	-0.2
3 248 3	4.819.6	2.7924	-0.8	0.426.67	0.857.49	0.0070	-0.4
3 270 5	4 851 3	2.8051	-1.4	0.420.07	0.874 21	0.9012	-1.2
3.286 1	4.875 1	2.8155	-0.2	0.497 35	1 036 5	0.9040	_1.0
3 331 0	4 940 8	2 8424	0.2	0.511.37	1.030 3	0.9333	_1.8
3.347 7	4.964 8	2.8519	-0.1	0.560.63	1 206 3	0.9477	-1.2
				0.624.81	1 394 3	1 0055	37
	ErCl₃, Set 2	2 vs. KCI		0.665 73	1,512.6	1.0256	1 9
0.123 06	0.211 49	0.7832	-7.4	0.00373	1,729.5	1.0250	5.0
0.127 34	0.223 73	0.7998	8.3	0.784.87	1 887 7	1 0933	3.0
0.598 47	1.311 2	0.9860	0.1	0.826.66	2 0 2 1 9	1 1150	0.1
0.599 92	1.315 2	0.9867	0.0	0.866.41	2 1 5 3 1	1 1363	-1.6
0.776 54	1.852 0	1.0833	0.2	0,000 41	2 296 5	1 1617	-0.6
0.784 41	1.875 1	1.0864	-1.3	0.962.07	2,290 5	1 1 95 1	-0.0
0.790 69	1.896 7	1.0906	-0.7	0.902.07	2 5 3 4 9	1 2025	-0.4
0.798 42	1.923 9	1.0962	0.4	1 062 9	2.554 5	1 2589	
1.406 7	4.325 2	1.4977	6.2	1.065 /	2 883 9	1 2613	-0.2
1.416 2	4.365 6	1.5036	5.3	1.005 7	2 919 5	1.2660	-0.2
1.436 6	4.451 1	1.5154	2.7	1 161 9	3 265 5	1 3242	-0.7
				1 169 3	3 295 5	1 3291	-0.7
	ErCi ₃ , Set 2			1 254 9	3 653 2	1 3880	0.2
0.784 41	1.0684	1.0859	-1.8	1 262 5	3,685,1	1.3931	0.0
0.790 69	1.0777	1.0895	-1.8	1 368 8	4 151 2	1 4690	1.8
0.798 42	1.0903	1.0953	-0.4	1 380 8	4 205 1	1 4777	21
1.539 1	2.2326	1.5867	0.4	1 480 6	4 666 0	1 5523	5.1
1.559 5	2.2668	1.6040	3.0	1 483 6	4 678 9	1 5541	4.8
1.561 0	2.2723	1.6087	6.5	1.100 0		1100 11	
1.716 8	2.5065	1.7123	-4.0		TmCl ₃ vs. (CaCI,	
1.721 9	2.5143	1.7159	-4.2	1 0629	1.4924	1.2591	-0.8
1.727 4	2.5228	1,7198	-4.3	1.0757	1 51 14	1 2666	-1.6
1.733 4	2.5323	1.7244	-4.2	1 1619	1 6449	1 3238	-1.0
2.176 5	3.2247	2.0607	1.6	1.1693	1.6565	1.3289	-0.9
2.257 /	3.3451	2.1165	-2.9	1 2549	1.7897	1.3872	-0.6
2.302 8	3.4136	2.1494	-3.3	1.2625	1.8013	1.3922	-0.8
2.303 9	3.4196	2.1549	1.4	1.3688	1.9675	1.4665	-0.6
2.406 4	3.5/56	2.2302	1.5	1.3808	1.9863	1.4750	-0.6
2.423 0	3.6005	2.2420	1.2	1.4317	2.0661	1.5113	-0.6
2.509 0	3.7307	2.3044	1.5	1.4806	2.1429	1.5466	-0.5
2.516 /	3.7428	2.3105	2.0	1.4836	2.1473	1.5484	-0.9
2.523 9	3.7530	2.3150	1.3	1.5158	2.1982	1.5722	-0.5
2.563 4	3.8124	2.3432	1.3	1.5716	2.2857	1.6128	-0.8
2.652 8	3.9501	2.4104	5.4	1.6536	2.4149	1.6737	-0.5
2,8758	4.2/14	2.5527	-4.7	1.6985	2.4855	1.7072	-0.4
2.904 6	4.5144	2.3723	-4.1	1.7922	2.6327	1.7776	-0.4
2.903 0	4.4073	2.01.05	-0.0	1.8554	2.7317	1.8252	-0.5
3.032.0	4,5008	2.0003	-0.3	1.8701	2.7545	1.8361	-0.8
3.040.0	4,5110	2.6667	-0.0	1.9387	2.8619	1.8881	-0.7
3.046.5	4.5190	2.0007	2.2	1.9551	2.8875	1.9005	-0.8
3 058 2	4 5464	2.6791	3.0	2.0203	2.9898	1.9507	-0.1
3.030 2	4.5464	2.0731	20	2.0355	3.0131	1.9618	-0.5
31376	4.5655	2,0072	2.5	2.1055	3.1223	2,0153	-0.1
3 1 3 8 3	4.6624	2.7283	2.4	2.1269	3.1555	2.0315	-0.1
3 139 1	4 6632	2 7284	1 8	2.2275	3.3111	2.1076	-0.1
3 649 5	5 4098	3 0240	1.8	2.2533	3.3511	2.1272	0.2
3.651 7	5.4247	3.0360b	125	2.3453	3.4923	2.1959	0.1
3.773 5	5.5952	3.0906	0.2	2.3553	3.5079	2.2037	0.4
3.784 0	5,6098	3.0951	-1 1	2.4445	3.6445	2.2701	0.8
				2.4466	3.6475	2.2714	0.6
	TmCl ₃ (fro	om emt)		2.5555	3.8129	2.3510	0.6
0.005 00		0.8710	-1.5	2.5573	3.8161	2.3528	1.2
0.010 00	_	0.8424	0.1	2.6041	3.8855	2.3851	-0.3
0.015 00		0.8251	0.7	2.6476	3.9536	2.4189	2.4
0.020 00	—	0.8127	0.4	2.6516	3.9581	2.4201	0.8
0.021 /8		0.8089	0.1	∠.0009	3.9035	2.4220	-0.4

т	ah	ما	11	Co	nti	nu	ьЧ
	au	6		00	1161	iiu	cu

						· · · · · · · · · · · · · · · · · · ·	
m, ReCl ₃	m, standard	ϕ , ReCl ₃	$10^{3}\Delta\phi$	m, ReCl₃	m, standard	ϕ , ReCl ₃	$10^{3}\Delta\phi$
2.6995	4.0289	2.4528		1.4673	2.1231	1.5382	-1.0
2 7441	4 0957	2 4840	-0.6	1 5145	2 1982	1 5735	-0.1
2.7441	4.0957	2.4040	-0.0	1.5145	2.1362	1.57.55	_0.5
2.8443	4.2459	2.5539	-0.1	1.5702	2.2057	1.0142	-0.5
2.8944	4.31//	2.5850	-3.2	1.6518	2.4149	1.6755	0.1
2.9884	4.4603	2.6511	-0.1	1.6969	2.4855	1.7088	-0.4
3.0303	4.5222	2,6785	-0.4	1.7883	2.6284	1.7767	-1.7
3.1092	4.6393	2.7301	-0.3	1.7904	2.6327	1.7794	0.6
3.1728	4.7336	2.7709	-0.2	1.8048	2.6548	1.7897	-1.2
3.2221	4.8065	2.8019	-0.4	1.8535	2.7317	1.8271	-0.9
3 3687	5.0253	2,8935	0.4	1.8635	2.7465	1.8337	-1.9
3 3082	5 0689	2 91 1 1	0.0	1 8677	2 7545	1 8384	-0.3
2 5 7 4 1	5 2247	2.0170	0.0	1 8829	2 7 7 7 1	1 8/86	_1.8
3.5741	5.5547	3.0170	0.9	1.0029	2.7771	1 0000	-1.0
3.5892	5.3572	3.0254	0.5	1.9360	2.0019	1,0900	-0.2
3.7182	5.5548	3.0999	-0.3	1.9526	2.8875	1.9030	-0.6
3.7281	5.5714	3.1067	0.8	1.9703	2.9147	1.9159	-1.2
3.8481	5.7607	3.1758	0.5	2.0011	2.9629	1.9395	-1.2
3.8647	5.7889	3.1867	1.8	2.0175	2.9898	1.9534	0.1
3.8814	5.8103	3.1916	3.0	2.0325	3.0131	1.9647	0.0
				2.1025	3.1223	2.0182	-0.1
	YbCl ₃ (fro	m emf)		2 1 2 3 6	3 1555	2 0 3 4 7	0.3
0.005.00	_	0 8704	0.1	2 2 2 2 3 7	3 3111	21112	0.5
0.000 00		0.8422	1 3	2.22.07	2 2511	2 1 2 0 9	0.5
0.010 00		0.0422	1.5	2.2495	3.3511	2.1300	0.0
0.015 00		0.8255	1.0	2.3409	3.4923	2.2000	0.7
0.020 00		0.8139	1.7	2.3507	3.5079	2.2080	1.3
0.025 00		0.8050	1.1	2.4398	3.6445	2.2745	1.1
0.030 00		0.7978	0.0	2.4419	3.6475	2.2758	0.8
0.035 00		0,7918	-1.4	2.5503	3.8129	2.3558	0.7
0.040.00		0.7865	-3.0	2 5 5 2 1	38161	2 3576	1.2
0.040.17		0 7864	-31	2,5721	3 8/42	2 3697	_1 3
0.040 17		0.7004	0.1	2.5721	2 0 0 5 5	2.3037	-1.5
	YbCl, v	s. KCI		2.5969	3.8655	2.3099	-0.7
0 126 45	0 218 51	0 7870	-0.2	2.6073	3.8985	2.3962	-0.4
0.120 45	0.210 31	0.7070	-0.2	2.6423	3.9536	2.4238	1.8
0.154 35	0.271 05	0.7909	4.5	2.6458	3.9581	2.4254	0.9
0.238 22	0.435 /1	0.8237	0.8	2.6505	3.9635	2.4270	-0.9
0.349 10	0.674 53	0.8668	-1.1	2.6838	4.0289	2.4671 ^b	15.3
0.350 55	0.677 83	0.8674	-1.1	2.7233	4.0743	2.4800	-0.1
0.426 69	0.857 49	0.9011	-1.5	2,7375	4.0957	2,4900	-0.2
0.433 35	0.874 21	0.9046	-1.1	2 7514	4 1170	2 5002	0.2
0.497 11	1.036 5	0.9357	-0.2	2.7314	4.1170	2.5602	-0.3
0.511 13	1.072 7	0,9421	-0.7	2.0373	4.2433	2.5002	0.5
0 561 15	1.206.3	0.9662	-1.5	2.8851	4.3177	2.5934	0.2
0.625.37	1 394 3	1 0046	3.6	2.8991	4.3395	2.6039	0.6
0.025 57	1,512,6	1.0040	1 0	2.9200	4.3715	2.6189	1.3
0.000 29	1.012.0	1.0240	2.0	2.9801	4.4603	2.6585	-0.1
0.785.61	1.88/ /	1.0923	2.0	3.0217	4.5222	2.6862	-0.5
0.82738	2.021 9	1.1141	0.3	3.0994	4.6393	2.7387	0.3
0.867 01	2.153 1	1.1355	-1.7	3.1629	4.7336	2.7796	-0.6
0.907 45	2.296 5	1.1611	-0.6	3.2118	4.8065	2.8109	-1.0
0.915 72	2.324 9	1.1657	-1.1	3 3569	5 0253	2 9037	-0.8
0.916 54	2.329 4	1.1670	-0.2	3 3 8 5 7	5.0689	2 9218	_0.8
0.962 61	2.493 5	1.1944	-1.4	2 5 5 9 9	5.0005	2,0200	0.0
0.973 64	2.534 9	1.2017	-0.9	3.0000	5,5547	3.0299	0.2
1 049 8	2 820 9	1 2499	-12	3.5/35	5.3572	3.0367	0.0
1.040	2 8 2 0 2	1.2435	_0.5	3.7003	5.5548	3.1148	0.7
1.054 2	2.000.0	1.2000	-0.5	3.7101	5.5714	3.1217	0.3
1.066 5	2.803 9	1.2600	-1.9	3.8285	5.7607	3.1921	0.0
1.1/85	3.334 5	1.3359	-0.3	3.8447	5.7889	3,2033	1.6
1.180 1	3.340 5	1.3367	-0.6	3.9260	5.9216	3.2504	0.9
1.280 5	3.766 1	1.4072	1.0	3,9291	5.9261	3.2517	0.3
1.284 3	3.782 9	1.4101	1.2	4 0018	6.0455	3 2921	-16
1.461 0	4.578 2	1.5391	4.4	4.0010	0.0400	5.2521	1.0
1 467 3	4.607.2	1.5436	4.4		LuCl ₃ (fro	om emf)	
				0.005 00	_	0.8705	-0.3
	YbCl ₃ vs	. CaCl₂		0.010.00		0.8412	-0.4
1.0498	1.4735	1.2521	1.0	0.015.00		0.8253	0.5
1 0542	1 4809	1 2557	1 7	0.010.00		0.9125	_1 0
1 1 7 8 5	1 6716	1 2261	_0 1	0.020.00		0.0125	-1.0
1 1 0 0 1	1 6741	1 2272	-0.1	0.025.00		0.0040	-0.9
1.1601	1.0/41	1.33/2	-0.1	0.030.00		0.7985	-1.0
1.2805	1.8315	1.4070	0.9				
1.2843	1.8363	1.4084	-0.5			0 7057	~ ~
1.4303	2.0661	1.5128	0.4	0.125 07	0.218 51	0.7957	6.2
1.4610	2.1141	1.5347	0.0	0.154 42	0.271 85	0.7985	1.4
•							

Table III. Continued

the second se							
m, ReCl ₃	m, standard	ϕ , ReCl ₃	$10^{3}\Delta\phi$	m, ReCl ₃	m, standard	ϕ , ReCl ₃	$10^{3}\Delta\phi$
0.238 18	0.435 71	0.8238	-1.3	2.8837	4.3177	2.5946	-1.2
0.349 14	0.674 53	0.8667	-2.9	2.9783	4.4603	2.6601	-1.0
0.350 49	0.677 83	0.8675	-2.6	3.0194	4.5222	2.6882	-1.0
0.426 43	0.857 49	0.9017	-1.9	3.0963	4.6393	2.7414	0.4
0.433 37	0.874 21	0.9046	-2.2	3.1589	4.7336	2.7831	0.3
0.496 76	1.036 5	0.9364	-0.1	3.2075	4.8065	2.8146	-0.1
0.510 99	1.072 7	0.9424	-1.0	3.3517	5.0253	2.9082	-0.1
0.561 23	1,206 3	0.9661	-2.0	3.3805	5.0689	2.9263	-0.5
0.625 32	1.394 3	1.0047	3.7	3.5519	5.3347	3.0358	0.8
0.666 21	1.512 6	1.0249	2.2	3.5671	5.3572	3.0441	-0.4
0.735 29	1.729 5	1.0658	5.4	3.6927	5.5548	3.1213	-1.3
0.786 09	1.887 7	1.0916	2.4	3.7023	5.5714	3,1283	-0.1
0.827 40	2.021 9	1.1140	0.9	3.8063	5.7414	3.1936	1.1
0.867 13	2.153 1	1.1353	-1.3	3.8187	5.7607	3.2002	0.1
0.907 59	2.296 5	1.1609	-0.2	3.8354	5.7889	3.2111	0.7
0.962 67	2.493 5	1.1943	-0.7	3.9149	5.9216	3.2596	0.4
0.973 49	2.534 9	1.2019	0.1	3.9178	5.9261	3.2610	0.1
1.063 2	2.872 7	1.2586	-0.4	3.9902	6.0493	3.3048	-0.6
1.066 3	2,883 9	1.2603	-0.8	4.0015	6.0699	3.3126	0.2
1.075 9	2.919 5	1.2657	-1.6	4.1239	6.2867	3.3871	- 0.4
1.161 8	3.265 5	1,3243	0.0				
1.169 3	3.295 5	1,3291	-0.2		YCI ₃ (fror	n emf)	
1.254 7	3.653 2	1.3882	0.5	0.005 00		0.8710	-1.8
1.262 4	3.685 1	1.3932	0.1	0.010 00	—	0.8425	-1.5
1.368 5	4.151 2	1.4693	1.6	0.015 00	—	0.8277	0.6
1.380 3	4.205 1	1.4782	2.1	0.020 00	—	0.8170	1.2
1.480 0	4.666 0	1.5529	4.7	0.025 00		0.8093	1.8
1.482 9	4.678 9	1.5548	4.5	0.030 00		0.8019	0.6
	LuCL ve					KCI	
1.0000	1 4004		0.4	0.071.00	0 1 2 2 7		10.7
1.0632	1.4924	1.2587	-0.4	0.071.00	0.1237	0.00200,0	19.7
1.0759	1.5114	1.2003	-1.0	0.114 0	0.1974	0.78090.0	-1.3
1.1010	1.0449	1.3240	-0.3	0.134 7	0.2312	0.78050	-9.2
1.1693	1.0000	1.3289	-0.4	0.136.6	0.2372	0.76960	-0.9
1.2547	1./89/	1,38/5	-0.3	0.1957	0.3494	0.00050	-1.4
1.2024	1.0015	1.5925	-0.8	0.220 0	0.4118	0.8190	30
1.3003	1.9075	1.4000	-0.9	0.316 3	0.0000	0.00000	1.4
1.3603	2.0661	1.4750	-0.6	0.330 7	0.0927	0.07110	-1.4
1.4310	2.0001	1.5121	-0.5	0.471 0	1 1667	0.96200	_1.3 _1.3
1,4800	2.1429	1.5472	-1.0	0.595.06	1 3112	0.9917	2.2
1.4029	2.1473	1.5492	-1.2	0 596 41	1.3152	0.9925	2.4
1,5150	2.1902	1,6130	-0.9	0.633.7	1 4169	1.0078¢	-23
1.5705	2.2057	1.6750	-0.9	0 761 7	1 806 7	1.0764¢	-5.0
1.6971	2.4145	1.07.30	-1.0	0.772 23	1.852.0	1.0894	1.8
1 7906	2.4000	1.7000	_1 3	0.779 67	1.8751	1.0930	1.1
1 8535	2 7317	1 8271	_1 3	0.786 06	1.8967	1.0971	1.5
1 8680	2 7545	1.8381	-1.3	0.793 82	1.9239	1.1025	2.5
1 9361	2 8619	1.8907	_0.9	0.911 4	2.3147	1.1658c	-4.4
1.9524	2.8875	1 9032	-0.9	0.960 15	2.4891	1.1952	-5.0
2.0173	2.9898	1.9536	-0.2	1.033 7	2.7652	1.2424 ^c	-4.0
2.0327	3 0131	1 9645	-11	1.124 0	3.1241	1.3041 ^c	-0.6
2 1022	3 1 2 2 3	2 0185	-0.4	1.305 1	3.8920	1.4326 ^c	6.4
2.1235	3.1555	2 0348	-0.4	1.406 1	4.3252	1.4984	2.2
2.2234	3.3111	2.1114	0.0	1.4158	4.3656	1.5040	1.0
2,2493	3.3511	2,1310	-0.2	1.416 4	4.3663	1.5036 ^c	0.2
2.3403	3.4923	2.2006	0.5	1.435 3	4.4511	1.5168	0.1
2.3503	3.5079	2.2084	0.7	1.459 3	4.5676	1.5368	3.1
2.4385	3.6445	2.2757	1.8	1.511 8	4.8040	1.5723°	1.3
2.4408	3.6475	2,2768	1.2				
2.5485	3.8129	2.3574	2.0		YCl₃ vs. (CaCl₂	
2.5503	3.8161	2.3592	2.5	0.772 13	1.0588	1.0904	2.9
2.5983	3.8855	2.3904	-1.6	0.779 67	1.0684	1.0925	0.7
2.6398	3.9536	2.4261	3.9	0.786 06	1.0777	1.0959	0.3
2.6437	3.9581	2.4274	2.3	0.793 82	1.0903	1.1017	1.6
2.6495	3.9635	2.4279	-1.4	1.559 9	2.2668	1.6036	-1.9
2.6929	4.0289	2.4588	-1.8	1.561 6	2.2723	1.6080	1.3
2.7367	4.0957	2.4908	-1.3	1.714 1	2.5065	1.7150	-2.8
2.8359	4.2459	2.5615	-0.9	1.7191	2,5143	1.7186	-2.8

Table III. Continued

m, ReCl ₃	m, standard	ϕ , ReCl ₃	$10^{3}\Delta\phi$	m, ReCl₃	m, standard	ϕ , ReCl $_{ m 3}$	$10^{3}\Delta\phi$
1.724 4	2.5228	1.7228	-2.5	3.026 6	4.5068	2.6658	0.0
1,730 4	2.5323	1.7274	-2.3	3.029 0	4.5101	2.6671	-0.3
2.120 5	3.1401	2.0207	0.4	3.034 4	4.5190	2.6716	0.7
2.224 3	3.2999	2.0982	0.5	3.041 2	4.5290	2.6760	0.7
2.265 0	3.3632	2.1295	1.4	3.053 1	4.5464	2.6835	0.5
2.297 2	3.4136	2.1546	2.6	3.065 8	4.5653	2.6919	0.6
2.587 7	3.8826	2.3970 ^b	32.7	3.131 0	4.6616	2.7339	0.8
2.869 0	4.2714	2.5588	-2.1	3.132 0	4,6624	2.7338	0.2
2.897 9	4.3144	2.5784	-2.0	3.132 9	4.6632	2.7338	-0.4
2.959 6	4.4073	2.6212	-0.5	3.947 8	5.8941	3.2091	0.0

^a Data of Heiser (5); ^b Entry not used in the least-squares fits. ^c Data of Mason (7).

Figure 2. Differences between experimental and calculated osmotic coefficients of ErCl₃ at 25 °C. Circles represent set 1 while squares represent set 2.

As mentioned above, the concentration uncertainties of the stock solutions are 0.05% (which decreases to about 0.02% for the most dilute rare earth chloride solutions) and the isopiestic equilibrations were made to at least 0.1% above 0.5 *m* and to 0.15% below this concentration. The above uncertainties limit the ultimate precision to which the data reported here can be used to yield osmotic and activity coefficients. Assuming the maximum errors above for both rare earth chloride and standard solutions, rare earth chloride osmotic coefficients resulting from these data would be uncertain to 0.3% above 0.5 *m* and 0.34% below this concentration with the probable errors about two-thirds of these values. The scatter for ErCl₃ set 2 and YCl₃ is somewhat larger than this, about 0.5% at high concentrations.

In obtaining smoothed osmotic coefficients and activity coefficients, consideration must also be made of the reliability of the fits and of the dilute solution emf data since they influence these fits. Inspection of these emf data with regard to scatter and series trends indicates that dilute solution osmotic coefficients calculated from them are reliable to about 0.5%. However, their uncertainties have little effect on the results above 0.1 m so the uncertainties from the fits are about 0.1-0.2% for the osmotic coefficients and 0.3-0.4% for the activity coefficients. Including the concentration uncertainties, this indicates that our smoothed osmotic coefficients to about 0.6-0.7%. The exceptions are

Ho, Tm, and Yb since, as mentioned previously, they do not connect up as well with the dilute solution emf data. For these salts the osmotic coefficients are uncertain to about 0.7% below 0.5 *m* and 0.5% above this concentration. The activity coefficients are uncertain to about 1.0% above 0.1 *m* for these three salts. Also, ϕ and γ_{\pm} for YCl₃ are known only to about 1.0% due to the larger scatter. Since there is a gap in the YCl₃ data between 3.13 and 3.95 *m* (saturated solution), the errors in these properties may be larger above 3.1 *m* for this salt.

To test the reproducibility of the experimental procedure two separate KCI, CaCl₂, and ErCl₃ solutions were prepared and analyzed by different workers. Isopiestic measurements were then performed using these different solutions. In Figure 2 the differences between the experimental and calculated osmotic coefficients of ErCl₃ for these two sets of data are shown as a function of the square root of the molality. The two sets of data agree within the error limits quoted above. The emf based osmotic coefficients appear to deviate in a smooth fashion since the original emf data were smoothed in the process of calculating the ϕ 's. Figure 3 is a similar plot for EuCl₃. This plot and similar ones for the other rare earth chlorides indicate that discrepancies exist between the osmotic coefficients of the standards KCI and CaCl₂ in the overlap region.

The osmotic coefficients of Robinson (14), Mason (7, 8), and Mason and Ernst (9) agree with those reported here within 0.4-0.7% for La, Pr, and Nd and about 1.1% for Sm and Eu.

i	r _i	A _i	<i>r_i</i>	A _i
		LaCl ₃		PrCl ₃
1	0.75	-7.399 06	0.75	-8,927 51
2	0.875	47.172 41	0.875	53.157 73
3	1	-61.405 60	1	-69.632 31
4	1.125	24.708 09	1.125	28.830 48
5	3	-0.046 135	1.5	-0.362 784
6	4	$2.632 1 \times 10^{-3}$	3	$-2.800 4 \times 10^{-2}$
7	9	$3.405 1 \times 10^{-7}$	9	$4.016 \ 2 \times 10^{-7}$
S.D.		0.001 6		0.001 7
		NdCl ₃		SmCl _a
1	0.75	-12.002 70	0.75	-13.102 58
2	0.875	63.657 55	0.875	69.304 94
3	1	-81.106 48	1	-90.219 68
4	1.125	32.595 60	1.125	37.396 27
5	2.5	-0.109 547	2	-0.326 974
6	3	4.4889×10^{-3}	7	$-1.434 \ 3 \times 10^{-4}$
7	9.5	$1.155 0 \times 10^{-7}$	7.5	6.705 4 × 10 ^{-s}
S.D.		0.001 4		0.001 2
		EuCl ₃		GdCl ₃
1	0.75	-13.713 50	0.75	-14.653 42
2	0.875	71.128 79	0.875	75.426 52
3	1	-91.876 66	1	-98.221 74
4	1.125	37.825 99	1.125	40.910 88
5	2	-0.294 883	2	-0.384 440
6	3.5	-4.433 7 × 10 ⁻³	8	-3.1472×10^{-5}
7	12	7.118 1 × 10 ⁻ °	8.5	1.537 9 × 10−⁵
S.D.		0.001 3		0.001 9
		TbCl ₃		DyCl ₁
1	0.75	-12,159 28	0.75	-10.343 98
2	0.875	67.023 53	0.875	61.969.94
3	1	-88,738 20	1	-85,959 32
4	1.125	37.320 34	1.125	38.868 95
5	2	-0.356 873	1.5	-1.438 954
6	7.5	−1.349 7 × 10 ⁻⁵	5	$-4.503 6 \times 10^{-3}$
7	11.5	4.559 0 × 10 - *	5.5	1.828 3 × 10-3
S.D.		0.001 9		0.001 7
		HoCl		ErCl.
1	0.75	-4 962 48	0.75	-9 598 87
2	0.875	37,404 59	0.875	56 733 58
3	1	-47.749 62	1	-74,847.03
4	1.125	18,210 42	1,125	31.017 66
5	2	0.275 104	2	-0.203 421
6	3	-8.366 5 × 10 ⁻²	4	-2.956 9 × 10-3
7	4	5.679 7 × 10-3	10	1.487 2 × 10 ⁻⁷
S.D.		0.002 3		0.002 2
		TmCl ₃		YbCI,
1	0.75	-3.705.01	0.75	-7.824.86
2	0.875	31.976 34	0.875	48.116 53
3	1	-40,914 89	1	-61,726 08
4	1.125	15.669 00	1.125	24.549 08
5	2.5	0.100 555	3.5	-0.014 418
6	4	$-3.809 \ 9 \times 10^{-2}$	8.5	3.551 9 × 10-6
7	4.5	1.2910×10^{-2}	12	-8.874 0 × 10-°
S.D.		0.001.5		0.001 4
		LuCl₃		YCI3
1	0.75	-8.138 50	0.75	-8.597 86
2	0.875	49.562 05	0.875	54.552 08
3	1	-63.707 13	1	-75.578 79
4	1.125	25.398 94	1.125	33.943 37
5	3.5	-0.015 859	1.5	-1.211 852
6	7.5	1.855 8 × 10 ⁻⁵	5.5	-1.0429×10^{-3}
7	10	-1.7325×10^{-7}	6.5	1.845 5 × 10-4
S.D.		0.001 7		0.002 3

Table V. Osmotic Coefficients, Water Activities, and Activity Coefficients at Even Molalities

m	φ	<i>a</i> ₁	γ_{\pm}	m	φ	<i>a</i> ₁	γ_{\pm}
	L	aCI,		2.0	1.7829	0.773 4	0.8958
0.1	0.7760	0.994 42	0.3312	2.2	1.9126	0.738 4	1.105
0.2	0.7953	0.988 60	0.2905	2.4	2.0401	0.702 7	1.367
0.3	0.8267	0.982 29	0.2775	2.6	2.1640	0.666 7	1.690
2.4	0.8637	0.975 41	0.2753	2.8	2.2834	0.630 8	2.085
0.5	0.9046	0.967 93	0.2794	3.0	2.3971	0.595 6	2.563
2.6	0.9487	0.959 81	0.2881	3.2	2.5047	0.561 3	3.134
) 7	0.9958	0.951.01	0.3006	3.4	2.6056	0.528 1	3.809
ן., אר אר איז	1 0454	0.941 5	0.3168	3.6	2.7003	0.496 3	4.602
2.0	1 0974	0.931.3	0 3364	3.8	2.7895	0.465 9	5.529
1.0	1 1 5 1 4	0.920.4	0.3598	3.9307	2.8456	0.446 6	6.220
1.0	1 2644	0.896.4	0.3350		c	mcl	
1.2	1 3825	0.869.8	0.4945		0 7000		0.0071
1.4	1 5035	0.840.8	0.4940	0.1	0.7800	0.994 39	0.3271
1.0	1.6257	0.809.9	0.3321	0.2	0.8021	0.988 51	0.2888
2.0	1 7/73	0,005 5	0.7100	0.3	0.8351	0.982 11	0.2771
2.0	1 9666	0.7/3.8	1 056	0.4	0.8733	0.975 14	0.2760
2.2	1.0000	0.743 8	1.000	0.5	0.9155	0.967 55	0.2811
2.4	2.00.27	0.709 0	1.204	0.6	0.9610	0.959 30	0.2909
2.0	2.0927	0.675 6	1.009	0.7	1.0096	0.950 35	0.3046
2.0	2.1973	0.641 9	1.004	0.8	1.0610	0.940 7	0.3221
3.0	2.2903		2.205	0.9	1.1148	0.930 2	0.3435
3.2	2.3865	0.576 8	2.705	1.0	1.1709	0.919 1	0.3688
3.4	2.4/10	0.545 9	3.210	1.2	1.2888	0.894 5	0.4325
3.6	2.5498	0.516 1	3.786	1.4	1.4128	0.867 2	0.5166
3.8	2.6248	0.487 4	4.44/	1.6	1.5411	0.837 2	0.6258
3.8944	2.6597	0.474 1	4.794	1.8	1.6721	0.805 0	0.7661
		PrCI		2.0	1.8040	0.771 0	0.9447
	0 7770		0 0000	2.2	1.9352	0.735 8	1.170
0.1	0.7773	0.994 41	0.3298	2.4	2.0639	0.699 8	1.452
0.2	0.7985	0.988 56	0.2902	2.6	2,1885	0.663.6	1.799
0.3	0.8311	0.982 19	0.2780	2.8	2 3078	0.627.7	2 224
0.4	0.8687	0.975 27	0.2763	3.0	2 4 2 0 7	0.592.5	2 735
0.5	0.9099	0.967 75	0.2809	3.0	2 5268	0.558.4	3 345
0.6	0.9541	0.959 59	0.2899	3.4	2.5265	0.535 4	4 066
0.7	1.0011	0.950 76	0.3028	3.4	2.0203	0.020 4	4.000
0.8	1.0506	0.941 2	0.3192	2 6 1 1 1	2.7217	0.493 0	5 110
0.9	1.1026	0.931 0	0.3392	5.0414	2./411	0.407 1	5.115
1.0	1.1566	0.920 0	0.3630		E	EuCl.	
1.2	1.2704	0.896 0	0.4227	0.1	0 7814	0 994 38	0 3264
1.4	1.3901	0.869 1	0.5012	0.2	0.8056	0.988.46	0.2892
1.6	1.5142	0.839 8	0.6026	0.2	0.8000	0.982 00	0.2052
1.8	1.6409	0.808 3	0.7319	0.0	0.0401	0 974 97	0.2780
2.0	1.7683	0.775 0	0.8954	0.4	0.0700	0.967.30	0.2700
2.2	1.8949	0.740 5	1.100	0.5	0.9220	0.907 90	0.2035
2,4	2.0191	0.705 3	1.354	0.0	1 0103	0.930 93	0.2940
2.6	2.1393	0.669 8	1.664	0.7	1.0193	0.949 00	0.3093
2.8	2.2544	0.634 5	2.040	0.8	1.0716	0.940 1	0.3279
3.0	2.3631	0.600 0	2.489	0.9	1.1209	0.929 5	0.3505
3.2	2.4650	0.566.4	3.020	1.0	1.1643	0.918 2	0.3774
3.4	2 5597	0.534.1	3 639	1.2	1.3049	0.893 3	0.4449
3.6	2 6478	0 503 1	4 355	1.4	1.4316	0.865 5	0.5344
3.8	2 7307	0 4 7 3 4	5 1 8 4	1.6	1.5624	0.835 1	0.6507
3 8969	2 7697	0,479 4	5 633	1.8	1.6956	0.802 6	0.8004
3.0909	2.7057	0.4354	5.055	2.0	1.8293	0.768 3	0.9913
	N	IdCI ₃		2.2	1.9618	0.732 7	1.232
. .		-		2.4	2.0915	0.696 5	1.534
0.1	0.7767	0.994 42	0.3238	2.6	2.2170	0.660 1	1.908
0.2	0.7985	0.988 56	0.2850	2.8	2.3370	0.624 0	2.364
0.3	0.8307	0.982 20	0.2729	3.0	2.4505	0.588 7	2.916
0.4	0.8678	0.975 30	0.2711	3.2	2.5572	0.554 5	3.575
0.5	0.9086	0.967 79	0.2753	3.4	2.6577	0.521 4	4.357
0.6	0.9528	0.959 64	0.2841	3.5839	2.7464	0.492 0	5.208
0.7	1.0001	0.950 80	0.2968				
0.8	1.0502	0.941 3	0.3130		-	auC13	
0.9	1.1029	0.931 0	0.3329	0.1	0.7833	0.994 37	0.3279
1.0	1.1579	0.919 9	0.3566	0.2	0.8075	0.988 43	0.2909
1.2	1.2740	0.895 7	0.4164	0.3	0.8424	0.981 95	0.2804
1.4	1.3963	0.868 6	0.4954	0.4	0.8827	0.974 88	0.2805
1.6	1.5232	0.838 9	0.5978	0.5	0.9272	0.967 14	0.2871
1.8	1.6526	0.807 1	0.7291	0.6	0.9753	0.958 71	0.2985

Table V. Continued

m	φ	<i>a</i> ₁	γ_{\pm}	m	φ	<i>a</i> ₁	γ_{\pm}
0.7	1.0266	0.949 53	0.3142			HoCla	
0.8	1.0809	0.939 6	0.3341	0.1	0.7878	0.994 34	0.3430
0.9	1.1377	0.928 9	0.3582	0.2	0.8142	0.988 33	0.3061
1.0	1.1968	0.917 4	0.3867	0.3	0.8518	0.981 75	0.2968
1.2	1.3208	0.892 1	0.4587	0.4	0.8942	0.974 55	0.2985
1.4	1.4508	0.863 8	0.5542	0.5	0.9405	0.966 68	0.3068
1.6	1.5848	0.833 0	0.6789	0.6	0.9902	0.958 09	0.3203
1.0	1.7212	0.799.9	0.8401	0.7	1.0430	0.948 75	0.3385
2.0	1 9937	0.705 1	1 300	0.8	1.0990	0.938 6	0.3614
2.4	2.1267	0.692 3	1.509	0.9	1.15//	0.9277	0.3890
2.6	2.2553	0.655 4	2.052	1.0	1 3486	0.915 9	0.4219
2.8	2.3781	0.618 9	2.558	1.4	1.4855	0.860.8	0.5055
3.0	2.4943	0.583 2	3.172	1.6	1.6278	0.828 9	0.7673
3.2	2.6035	0.548 6	3.910	1.8	1.7733	0.794 5	0.9636
3.4	2.7063	0.515 3	4.790	2.0	1.9201	0.758 3	1.220
3.5898	2.8004	0.484 6	5.789	2.2	2.0663	0.720 7	1.552
				2.4	2.2102	0.682 3	1.979
	т	bCl,		2.6	2.3504	0.643 8	2.522
0.1	0.7857	0.994 35	0.3353	2.8	2.4855	0.605 6	3.206
0.2	0.8089	0.988 41	0.2976	3.0	2.6144	0.568 2	4.059
0.3	0.8440	0.981 92	0.2870	3.2	2.7363	0.532 1	5.109
0.4	0.8852	0.974 81	0.2876	3.4	2.8503	0.49/4	6.384
0.5	0.9309	0.967 02	0.2948	3.5	2.9561	0.464 5	7.912
0.6	0.9804	0.958 50	0.3072	3.0907	3.0052	0.448 9	8./6/
0.7	1.0333	0.949 21	0.3242				
0.8	1.0892	0.939 1	0.3456		E	ErCl,	
0.9	1.1477	0.928 3	0.3716	0.1	0.7868	0.994 35	0.3386
1.0	1.2085	0.916 6	0.4023	0.2	0.8116	0.988 37	0.3013
1.2	1.3360	0.890 9	0.4801	0.3	0.8481	0.981 83	0.2915
1.4	1.4695	0.862 2	0.5836	0.4	0.8902	0.974 67	0.2927
1.0	1.0072	0.030 0	0.7195	0.5	0.9366	0.966 82	0.3006
2.0	1 8880	0.761.8	1 1 2 4	0.6	0.9667	0.956 23	0.3138
2.2	2.0277	0.701.0	1 4 1 6	0.7	1.0402	0.940 00	0.3517
2.4	2.1646	0.687 7	1.787	0.0	1 1560	0.937 8	0.3814
2.6	2.2969	0.650 3	2.250	1.0	1.2180	0.916.0	0.4138
2.8	2.4231	0.613 3	2.824	1.2	1.3486	0.889 9	0.4963
3.0	2.5415	0.577 3	3.521	1.4	1.4868	0.860 7	0.6075
3,2	2.6517	0.542 5	4.358	1.6	1.6305	0.828 6	0.7555
3.4	2.7546	0.509 2	5.356	1.8	1.7780	0.794 0	0.9511
3.5733	2.8409	0.481 2	6.384	2.0	1.9273	0.757 5	1.208
				2.2	2.0766	0.719 5	1.543
	C	DyCl ₃		2.4	2.2240	0.680 7	1.976
0.1	0.7866	0.994 35	0.3399	2.6	2.3678	0.641 7	2.531
0.2	0.8105	0.988 39	0.3021	2.8	2.5065	0.603 1	3.234
0.3	0.8466	0.981 87	0.2920	3.0	2.6388	0.565 3	4.114
0.4	0.8885	0.974 72	0.2929	3.2	2.7040	0.528 /	5.204
0.5	0.9346	0.966 89	0.3007	3.4	2.0023	0.455 5	8 1 8 0
0.6	0.9843	0.958 33	0.3137	3 7840	3 0962	0.429.9	10.02
0.7	1.0373	0.949 02	0.3312	017010	0.0302	01120 0	10.02
0.8	1.0932	0.938 9	0.3533		-	[mCl	
0.9	1.1519	0.928 0	0.3800	~ 1	0 7700		
1.0	1.2130	0.916 5	0.4116	0.1	0.7780	0.994 41	0.3342
1.2	1 4773	0.861 5	0.4924	0.2	0.8054	0.968 46	0.2900
1.6	1.6181	0.829.8	0.7435	0.3	0.0452	0.901 69	0.2873
1.8	1.7618	0.795 7	0.9309	0.5	0.9378	0.966 77	0.2974
2.0	1.9064	0.759 8	1.174	0.6	0.9887	0.958 15	0.3108
2.2	2.0498	0.722 5	1.488	0.7	1.0424	0.948 77	0.3287
2.4	2.1902	0.684 7	1.887	0.8	1.0989	0.938 6	0.3510
2.6	2.3258	0.646 8	2.390	0.9	1.1581	0.927 6	0.3781
2.8	2.4552	0.609 3	3.016	1.0	1.2198	0.915 9	0.4102
3.0	2.5775	0.572 8	3.784	1.2	1.3504	0.889 8	0.4921
3.2	2.6924	0.537 5	4.717	1.4	1.4893	0.860 5	0.6030
3.4 3.6	2.8001	0.503 6	5.840	1.0	1.0345	0.828 2	0.7513
3.6302	2.9020	0.4710	7.100	2.0	1 9354	0.755 4	1 202
	2.3170	01100 2	·· · ·	2.0	1.0004	0.,000	1.200

Table V. Continued

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m	φ	<i>a</i> ₁	γ_{\pm}	m	φ	<i>a</i> ₁	γ_{\pm}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.2	2.0869	0.718 3	1.547	0.8	1.0972	0.938 7	0.3524
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.4	2.2365	0.679 2	1.988	0.9	1.1565	0.927 7	0.3795
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.6	2.3824	0.639 9	2.555	1.0	1.2185	0.915 9	0.4118
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.8	2.5235	0.601 0	3.276	1.2	1.3501	0.889 8	0.4944
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.0	2.6589	0.562 8	4.186	1.4	1.4903	0.860 4	0.6066
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.2	2.7884	0.525 7	5.325	1.6	1.6368	0.828 0	0.7571
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.4	2.9121	0.489 9	6.742	1.8	1.7876	0.793 0	0.9571
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.6	3.0313	0.455 5	8.501	2.0	1.9406	0.756 0	1.221
3.8814 3.1946 0.409 2 11.73 2.4 2.2450 0.678 2 2.021 YbCl, 2.6 2.3932 0.638 7 2.60 0.1 0.7822 0.994 38 0.3334 3.0 2.6760 0.560 7 4.30 0.2 0.8090 0.988 41 0.2966 3.2 2.8099 0.523 1 5.50 0.4 0.8904 0.974 66 0.2866 3.6 3.0650 0.451 5 8.92 0.5 0.3374 0.966 79 0.2967 3.8 3.186 0.417 6 11.33 0.6 0.9377 0.958 19 0.3098 4.0 3.3114 0.385 0 14.37 0.7 1.0412 0.948 83 0.3275 4.1239 3.3875 0.365 4 16.66 0.8 1.0977 0.938 7 0.3498 -	3.8	3.1475	0.422 4	10.69	2.2	2.0936	0.717 5	1.568
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.8814	3.1946	0.409 2	11.73	2.4	2.2450	0.678 2	2.020
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					2.6	2.3932	0.638 7	2.603
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Y	′bCl₃		2.8	2.5371	0.599 3	3.351
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	0.7822	0.994 38	0.3334	3.0	2.6760	0.560 7	4.301
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2	0.8090	0.988 41	0.2966	3.2	2.8099	0.523 1	5.502
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3	0.8472	0.981 85	0.2872	3.4	2.9392	0.486 7	7.016
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4	0.8904	0.974 66	0.2886	3.6	3.0650	0.451 5	8.921
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5	0.9374	0.966 79	0.2967	3.8	3 1886	04176	11.33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.6	0.9877	0.958 19	0.3098	4.0	3 3114	0.385.0	14 37
0.8 1.0977 0.9347 0.3498 0.90 1.1572 0.9277 0.3767 YCl, 1.0 1.2193 0.9159 0.4089 YCl, 0.3338 0.99437 0.33 1.4 1.4906 0.8604 0.6023 0.2 0.8094 0.98840 0.30 1.6 1.6368 0.8280 0.7514 0.3 0.8479 0.98184 0.29 1.8 1.7872 0.7931 0.9495 0.4 0.8922 0.97461 0.292 2.0 1.9399 0.7561 1.211 0.5 0.9405 0.96668 0.303 2.4 2.2437 0.6784 2.001 0.7 1.0465 0.948 58 0.33 2.6 2.3913 0.6389 2.578 0.8 1.1037 0.9384 0.35 2.8 2.5344 0.5997 3.314 0.9 1.1632 0.9273 0.38 3.0 2.6720 0.5612 4.248 1.0 1.2251 0.915 5 0.411 3.2 2.8043 0.5238 5.425 1.2 1.3550	0.7	1.0412	0.948 83	0.3275	1 1 2 3 9	3 3 8 7 5	0 365 4	16.66
0.9 1.1572 0.927 7 0.3767 YCl, 1.0 1.2193 0.915 9 0.4089 YCl, 1.2 1.3508 0.889 8 0.4910 0.1 0.7838 0.994 37 0.33 1.4 1.4906 0.860 4 0.6023 0.2 0.8094 0.988 40 0.300 1.6 1.6368 0.828 0 0.7514 0.3 0.8479 0.981 84 0.299 2.0 1.9399 0.7561 1.211 0.5 0.9405 0.966 68 0.300 2.2 2.0926 0.717 7 1.555 0.6 0.9921 0.958 01 0.311 2.4 2.2437 0.678 4 2.001 0.7 1.0465 0.948 58 0.33 2.6 2.3913 0.638 9 2.578 0.8 1.1037 0.938 4 0.352 2.8 2.5344 0.599 7 3.314 0.9 1.1632 0.927 3 0.388 3.0 2.6720 0.561 2 4.248 1.0 1.2251 0.915 5 0.411 3.2 2.8043 0.523 8	0.8	1.0977	0.938 7	0.3498	4.1235	3,3073	0.000 4	10.00
1.01.21930.912 f0.4089 YCl_3 1.21.35080.889 80.49100.10.78380.994 370.331.41.49060.860 40.60230.20.80940.988 400.3001.61.63680.828 00.75140.30.84790.981 840.2922.01.93990.756 11.2110.50.94050.966 680.3012.22.09260.717 71.5550.60.99210.958 010.3112.42.24370.678 42.0010.71.04650.948 580.332.62.39130.638 92.5780.81.10370.938 40.352.82.53440.599 73.3140.91.16320.927 30.383.02.67200.561 24.248 1.01.22510.915 50.4113.22.80430.523 85.4251.21.35500.889 40.5013.42.93160.487 66.9001.41.49190.860 30.6113.63.05490.452 78.7471.61.63450.828 20.7663.83.17510.419 211.061.81.78110.793 70.9664.00183.29370.386 813.982.22.07960.719 11.560.20.81150.988 370.29923.02.64840.564 14.1990.30.84910.981 810.28983.22.77640.527 2 <t< td=""><td>0.9</td><td>1,1572</td><td>0.927 7</td><td>0.3767</td><td></td><td></td><td></td><td></td></t<>	0.9	1,1572	0.927 7	0.3767				
1.2 1.3508 0.889 0.4910 0.1 0.7838 0.994 37 0.33 1.4 1.4906 0.860 4 0.6023 0.2 0.8094 0.988 40 0.30 1.6 1.6368 0.828 0 0.7514 0.3 0.8479 0.981 84 0.29 1.8 1.7872 0.793 1 0.9495 0.4 0.8922 0.974 61 0.29 2.0 1.9399 0.756 1 1.211 0.5 0.9405 0.966 68 0.30 2.4 2.2437 0.678 4 2.001 0.7 1.0465 0.948 58 0.33 2.6 2.3913 0.638 9 2.578 0.8 1.1037 0.938 4 0.35 2.8 2.5344 0.599 7 3.314 0.9 1.1632 0.927 3 0.38 3.0 2.6720 0.561 2 4.248 1.0 1.2251 0.915 5 0.411 3.4 2.9316 0.487 6 6.900 1.4 1.4919 0.860 3 0.614 3.6 3.0549 0.452 7 8.747 1.6 1.6345 <td< td=""><td>1.0</td><td>1 2193</td><td>0.915.9</td><td>0 4089</td><td></td><td>Y</td><td>′Cl₃</td><td></td></td<>	1.0	1 2193	0.915.9	0 4089		Y	′Cl₃	
1.41.49060.860 40.60230.20.80940.988 400.3001.61.63680.828 00.75140.30.84790.981 840.291.81.78720.793 10.94950.40.89220.974 610.292.01.93990.756 11.2110.50.94050.966 680.302.22.09260.717 71.5550.60.99210.958 010.3112.42.24370.678 42.0010.71.04650.948 580.332.62.39130.638 92.5780.81.10370.938 40.362.82.53440.599 73.3140.91.16320.927 30.383.02.67200.561 24.2481.01.22510.915 50.4113.22.80430.523 85.4251.21.35500.889 40.5033.42.93160.487 66.9001.41.49190.860 30.6143.63.05490.452 78.747 1.61.63450.828 20.7663.83.17510.419 211.061.81.78110.793 70.9664.03.29260.387 113.952.01.93010.757 21.2224.00183.29370.386 813.982.22.07960.719 11.560.20.81150.988 370.29923.02.64840.564 14.190.30.84910.981 810.28983.2<	1.2	1.3508	0.889.8	0.4910	0.1	0.7838	0.994 37	0.3383
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2	1 4906	0.860.4	0.4910	0.2	0.8094	0.988 40	0.3007
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.4	1.6368	0.828.0	0 7514	0.3	0.8479	0.981 84	0.2913
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0	1 7872	0.793 1	0.9495	0.4	0.8922	0.974 61	0.2932
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0	1 9399	0.756 1	1 211	0.5	0.9405	0.966 68	0.3020
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0	2 0926	0.717 7	1.555	0.6	0.9921	0.958 01	0.3159
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2	2.0920	0.717 /	2 001	0.7	1.0465	0.948 58	0.3346
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.4	2.2437	0.678 4	2.001	0.8	1.1037	0.938 4	0.3578
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0	2.3913	0.030 9	2.070	0.9	1.1632	0.927 3	0.3857
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0	2.5544	0.5997	3.314	1.0	1.2251	0.915 5	0.4188
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0	2.6720	0.561 2	4.248	1.2	1 3550	0.889.4	0.5025
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.2	2.8043	0.523 8	5.425	1 4	1 4919	0.860.3	0.6149
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.4	2.9316	0.4876	6.900	1.4	1,4315	0.828.2	0.0143
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.6	3.0549	0.452 /	8./4/	1.8	1 7811	0.0202	0.7040
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.8	3.1751	0.419 2	11.06	2.0	1 9301	0.757.2	1 221
4.0018 3.2937 0.386 8 13.98 2.2 2.0736 0.719 1 1.36 2.4 2.2279 0.680 2 2.00 LuCl ₃ 2.6 2.3731 0.641 1 2.56 0.1 0.7848 0.994 36 0.3358 2.8 2.5137 0.602 2 3.28 0.2 0.8115 0.988 37 0.2992 3.0 2.6484 0.564 1 4.19 0.3 0.8491 0.981 81 0.2898 3.2 2.7764 0.527 2 5.32 0.4 0.8917 0.974 62 0.2912 3.4 2.8978 0.491 6 6.72 0.5 0.9380 0.966 77 0.2992 3.6 3.0136 0.457 6 8.44 0.6 0.9879 0.958 19 0.3123 3.8 3.1260 0.424 9 10.56	4.0	3.2926	0.3871	13.95	2.0	2 0 7 9 6	0.737 2	1.221
LuCl ₃ 2.6 2.3731 0.641 1 2.56 0.1 0.7848 0.994 36 0.3358 2.8 2.5137 0.602 2 3.28 0.2 0.8115 0.988 37 0.2992 3.0 2.6484 0.564 1 4.19 0.3 0.8491 0.981 81 0.2898 3.2 2.7764 0.527 2 5.32 0.4 0.8917 0.974 62 0.2912 3.4 2.8978 0.491 6 6.72 0.5 0.9380 0.966 77 0.2992 3.6 3.0136 0.457 6 8.44 0.6 0.9879 0.958 19 0.3123 3.8 3.1260 0.424 9 10.56	4.0018	3.2937	0.386 8	13.98	2.2	2.0790	0.7191	2 001
0.10.78480.994 360.33582.82.51370.602 23.280.20.81150.988 370.29923.02.64840.564 14.190.30.84910.981 810.28983.22.77640.527 25.320.40.89170.974 620.29123.42.89780.491 66.720.50.93800.966 770.29923.63.01360.457 68.440.60.98790.958 190.31233.83.12600.424 910.56		1	u Cl		2.4	2.22/3	0.000 2	2.001
0.1 0.7848 0.994 36 0.3358 2.8 2.5137 0.602 2 3.28 0.2 0.8115 0.988 37 0.2992 3.0 2.6484 0.564 1 4.19 0.3 0.8491 0.981 81 0.2898 3.2 2.7764 0.527 2 5.32 0.4 0.8917 0.974 62 0.2912 3.4 2.8978 0.491 6 6.72 0.5 0.9380 0.966 77 0.2992 3.6 3.0136 0.457 6 8.44 0.6 0.9879 0.958 19 0.3123 3.8 3.1260 0.424 9 10.56		0 7040		0.0000	2.0	2.3/31	0.641 1	2.568
0.2 0.8115 0.98837 0.2992 3.0 2.6484 0.5641 4.19 0.3 0.8491 0.98181 0.2898 3.2 2.7764 0.5272 5.32 0.4 0.8917 0.97462 0.2912 3.4 2.8978 0.4916 6.72 0.5 0.9380 0.96677 0.2992 3.6 3.0136 0.4576 8.44 0.6 0.9879 0.95819 0.3123 3.8 3.1260 0.4249 10.56	0.1	0.7848	0.994 36	0.3358	2.0	2.513/	0.602 2	3.289
0.3 0.8491 0.98181 0.2898 3.2 2.7764 0.5272 5.32 0.4 0.8917 0.97462 0.2912 3.4 2.8978 0.4916 6.72 0.5 0.9380 0.96677 0.2992 3.6 3.0136 0.4576 8.44 0.6 0.9879 0.95819 0.3123 3.8 3.1260 0.4249 10.56	0.2	0.8115	0.988 37	0.2992	3.0	2.0484	0.564 1	4.19/
0.4 0.8917 0.974 62 0.2912 3.4 2.8978 0.491 6 6.72 0.5 0.9380 0.966 77 0.2992 3.6 3.0136 0.457 6 8.44 0.6 0.9879 0.958 19 0.3123 3.8 3.1260 0.424 9 10.56	0.3	0.8491	0.981 81	0.2898	3.2	2.7764	0.52/2	5.327
0.5 0.9380 0.966 77 0.2992 3.6 3.0136 0.457 6 8.44 0.6 0.9879 0.958 19 0.3123 3.8 3.1260 0.424 9 10.56	0.4	0.8917	0.974 62	0.2912	3.4	2.8978	0.491 6	6.723
0.6 0.9879 0.958 19 0.3123 3.8 3.1260 0.424 9 10.56	0.5	0.9380	0.966 77	0.2992	3.6	3.0136	0.4576	8.441
	0.6	0.9879	0.958 19	0.3123	3.8	3.1260	0.424 9	10.56
0.7 1.0410 0.948 84 0.3301 3.9478 3.2092 0.401 3 12.47	0.7	1.0410	0.948 84	0.3301	3.9478	3.2092	0.401 3	12.47

Some of these differences may arise from Mason's method of solution preparation (anhydrous salt added to water) which has been shown to result in the formation of small amounts of basic species in solution (20). Their largest source of error, however, is probably the purity of their rare earths since rare earth samples generally contained considerable amounts of other rare earths before ion-exchange separation methods were perfected. In spite of this, all of their data agree with ours to within 2.2 times our experimental error.

When comparing water activities and osmotic and activity coefficients for the various rare earth chlorides, the above sources of error are the major ones that need to be considered. When comparing the results of this study to data obtained using different experimental methods, the uncertainty in the isopiestic standards' osmotic coefficients also needs to be considered. Examination of Hamer and Wu's results (4) and comparison to similar reviews indicate the osmotic coefficients of KCI are known to about 0.1-0.2% at all concentrations. Our examination of the CaCl₂ osmotic coefficients indicates that they are un-

certain to 0.3–0.4% below 2.5 *m* and may have larger errors above this concentration. Examination of deviation plots for the various rare earth chlorides (see Figures 2 and 3) indicates that mismatches occur when the isopiestic standards were changed from KCI to CaCl₂. If more reliable CaCl₂ osmotic coefficient data were to become available, their use should result in the reduction of the standard deviations for eq 10 by 10–40% for the salts reported here.

Results

Figure 4 is a plot of the mean molal activity coefficients of La, Tb, and Lu chlorides as a function of the molality. The activity coefficients start out at a value of one at infinite dilution and decrease to values of 0.27-0.29 by 0.3-0.4 m. After going through a flat minimum, the activity coefficients begin to increase and reach values of 4.8-16.7 by saturation. Figure 5 is a similar plot for the osmotic coefficients. The osmotic coefficients decrease from one at infinite dilution, reach a minimum value of 0.7-0.8 by 0.1 m, and then increase to values of 2.6-3.4 by

Figure 3. Differences between experimental and calculated osmotic coefficients of EuCl₃ at 25 $^{\circ}$ C.

Figure 4. Mean molal activity coefficients of LaCl₃, TbCl₃, and LuCl₃ solutions at 25 $^{\circ}$ C.

Figure 5. Osmotic coefficients of LaCl₃, TbCl₃, and LuCl₃ solutions at 25 $^\circ\text{C}.$

saturation. In Figure 6 the water activities of the same three rare earth chlorides are shown as a function of the molality. The water activities decrease regularly from their values of one at infinite dilution to values of 0.37-0.49 by saturation. This decrease is more rapid above 1-1.5 *m* than it is at lower concentrations. The shapes of these curves are typical for strong electrolytes.

Figure 6. Water activities of LaCl₃, TbCl₃, and LuCl₃ solutions at 25 °C.

Figure 7. Mean molal activity coefficients of rare earth chloride solutions at constant molalities.

The initial decreases in γ_{\pm} , ϕ , and a_1 can be qualitatively accounted for in terms of the electrostatic interactions present in these solutions (Debye–Huckel theory) and the formation of small amounts of ion-pairs. At higher concentrations of rare earth chloride large amounts of water become tied up by the ions and by solvent separated ion-pairs resulting in an increase in γ_{\pm} and a decrease in a_1 for each of the salts.

Because of limitations on the size of graphs allowed here, it would be of little advantage to plot results for more rare earth chlorides in Figures 4–6. Consequently, in order to illustrate the small but real differences between the various rare earth chlorides, constant molality plots of γ_{\pm} , ϕ , and a_1 are given vs. the ionic radii of Templeton and Dauben (29) in Figures 7–9 at 0.4, 1.4, 2.4, and 3.4 *m*. The radius of yttrium was taken from Zachariasen (30). According to Hinchey and Cobble (6), Zachariasen's radius for yttrium is consistent with Templeton and Dauben's values for the other rare earths. It is known that the position of yttrium in the rare earth series changes with the property since it has one less completed electron shell than the

Figure 8. Osmotic coefficients of rare earth chloride solutions at constant molalities.

lanthanides. For volume properties it falls between Tb and Dy (24).

Series plots for γ_{\pm} at various concentrations are shown in Figure 7. It should be noted that these curves are S shaped with some modification occurring with increasing concentration. The jagged appearance of the curve at 0.4 m is mainly due to the uncertainties in the dilute osmotic coefficients obtained from emf measurements. In Figures 8 and 9 similar plots are shown for ϕ and a_1 . These curves are also S shaped at low and moderate concentrations. At high concentrations the shapes become modified with a1 decreasing from La to Nd and for Sm to Lu. In addition, the water activities of Sm through Lu are displaced relative to the light rare earth chlorides. A related effect is observed for the osmotic coefficients, and the relative viscosities (26) also show changes of the same type.

As the lanthanide contraction occurs, the radius of the trivalent cation decreases and its surface charge density increases across the rare earth series. The net result is an increase in the total number of waters associated with the cation across the rare earth series, giving rise to the increasing viscosities (26), the decreasing electrical conductances (23), and the decreasing water activities. From consideration of partial molal volume data (20), it has been suggested that a decrease in the inner sphere hydration number begins to occur when a critical radius size is reached at Nd and this hydration change is complete by Tb. The displacement of the trend in a_1 for the light rare earths from the trend in a_1 for the heavy rare earths indicates that the total hydration is greater for the rare earths with the lower inner sphere hydration number than for those with the higher inner sphere hydration number. In the electrical conductance paper (23) it was concluded that the effect of ion-pair formation appears to be

Figure 9. Water activities of rare earth chloride solutions at constant molalities.

about the same for all of the rare earth chlorides. The same appears to be true for the water activities and the activity coefficients although some of the high concentration changes in series trends may be influenced by differences in the amount of complex formation for the various rare earth chlorides.

The water activities at low and moderate concentrations form S shaped curves across the rare earth series and so must the partial molal free energies of water in these solutions. However, the relative partial molal enthalpies (1, 11) and the partial molal volumes of water (24) show distinct breaks at Nd and Tb at low and moderate concentrations. These breaks imply that although the free energy of water in these solutions depends mainly on the total hydration of the cation, its temperature and pressure derivatives are more sensitive to changes in the inner hydration sphere. Similar considerations hold for the partial molal properties of the solute although changes in the standard states of the rare earth ions also need to be taken into account for the free energies and enthalpies. The excess free energies and entropies for these solutions will be discussed in a separate paper, after the enthalpies of dilution of these solutions have been reported.

Acknowledgments

The rare earth oxides were purified by ion-exchange methods at the Ames Laboratory by J. E. Powell's group.

Literature Cited

- (1) DeKock, C. W., Ph.D. Dissertation, Iowa State University, Ames, Iowa, 1965.
- (2)Gildseth, W. M., Habenschuss, A., Spedding, F. H., J. Chem. Eng. Data, 20, 292 (1975). (3)
- Habenschuss, A., Spedding, F. H., *J. Chem. Eng. Data*, **21**, 95 (1976). Hamer, W. J., Wu, Y.-C., *J. Phys. Chem. Ref. Data*, **1**, 1047 (1972). Heiser, D. J., unpublished Ph.D. Dissertation, Iowa State University, Ames, (5) lowa, 1958

- (6) Hinchey, R. J., Cobble, J. W., Inorg. Chem., 9, 917 (1970).
- Mason, C. M., J. Am. Chem. Soc., **60**, 1638 (1938).
 Mason, C. M., J. Am. Chem. Soc., **63**, 220 (1941).

- Mason, C. M., Ernst, G. L., J. Am. Chem. Soc., 58, 2032 (1936).
 Mioduski, T., Siekierski, S., J. Inorg. Nucl. Chem., 37, 1647 (1975).
 Pepple, G. W., Ph.D. Dissertation, Iowa State University, Ames, Iowa, 1967.
- (12) Petheram, H. H., Spedding, F. H., IS-770, unclassified A.E.C. report, Ames Laboratory, Ames, Iowa, 1963. (13) Rard, J. A., Habenschuss, A., Spedding, F. H., J. Chem. Eng. Data, 21, 374
- (1976). (14) Robinson, R. A., J. Am. Chem. Soc., 59, 84 (1937).
- (15) Saeger, V. W., Spedding, F. H., IS-338, unclassified A.E.C. report, Ames
- Laboratory, Ames, Iowa, 1960. (16) Spedding, F. H., Atkinson, G., in "The Structure of Electrolytic Solutions",
- W. J. Hamer, Ed., Wiley, New York, N.Y., 1959, chapter 22.
 (17) Spedding, F. H., Cullen, P. F., Habenschuss, A., J. Phys. Chem., 78, 1106
- (1974)
- (18) Spedding, F. H., Dye, J. L., *J. Am. Chem. Soc.*, **76**, 879 (1954).
 (19) Spedding, F. H., Nelson, R. A., Rard, J. A., *J. Chem. Eng. Data*, **19**, 379
- (1974)
- (20) Spedding, F. H., Pikal, M. J., Ayers, B. O., J. Phys. Chem., 70, 2440 (1966). (21) Spedding, F. H., Porter, P. E., Wright, J. M., J. Am. Chem. Soc., 74, 2778
- (1952)(22) Spedding, F. H., Porter, P. E., Wright, J. M., J. Am. Chem. Soc., 74, 2781

(1952).

- (23) Spedding, F. H., Rard, J. A., Saeger, V. W., J. Chem. Eng. Data, 19, 373 (1974).
- (24) Spedding, F. H., Saeger, V. W., Gray, K. A., Boneau, P. K., Brown, M. A., DeKock, C. W., Baker, J. L., Shiers, L. E., Weber, H. O., Habenschuss, A., J. Chem. Eng. Data, 20, 72 (1975).
- Spedding, F. H., Walters, J. P., Baker, J. L., J. Chem. Eng. Data, 20, 438 (25)(1975).
- (26)Spedding, F. H., Witte, D., Shiers, L. E., Rard, J. A., J. Chem. Eng. Data, 19. 369 (1974).
- Spedding, F. H., Yaffe, I. S., J. Am. Chem. Soc., 73, 4751 (1952). (27)
- (28)
- Stokes, R. H., *Trans. Faraday Soc.*, **41**, 637 (1945). Templeton, D. H., Dauben, C. H., *J. Am. Chem. Soc.*, **76**, 5237 (1954). Zachariasen, W. H., in "The Actinide Elements", G. T. Seaborg and J. J. (29) (30)Katz, Ed., McGraw-Hill, New York, N.Y., 1954.

Received for review November 24, 1975. Accepted March 29, 1976. This paper is based, in part, on the Ph.D. Dissertation of V.W. Saeger, 1960, and the M.S. Thesis of H. H. Petheram, 1963, at Iowa State University, Ames, Iowa. Part of these data has appeared in preliminary form in ref 12 and 15. This work was performed for the U.S. Energy Research and Development Administration under Contract No. W-7405-eng-82.

Supplementary Material Available: Table I (12 pages). Ordering information is given on any current masthead page.

Three-Phase Solid–Liquid–Vapor Equilibria of Binary–n-Alkane Systems (Ethane-*n*-Octane, Ethane-*n*-Decane, Ethane-*n*-Dodecane)

James P. Kohn,* Kraemer D. Luks, and P. H. Liu

Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

Pressure-temperature profiles along with liquid compositions and molar volumes are presented for three n-alkane solutes with ethane as a common solvent. The data were taken employing cryoscopic techniques over a liquid compositional range from solute-rich solutions to very dilute solute solutions. The liquid compositional data when represented as logarithm of composition vs. T_{FUS}/T (where $T_{\rm FUS}$ = freezing temperature of each pure solute) are smooth curves which become quite linear in the dilute solute range. The standard deviations of the liquid composition data are 0.67% for *n*-octane, 0.84% for *n*decane, and 2.04% for n-dodecane.

Solid solubility data of hydrocarbon components in low molecular weight solvents are relatively rare compared to the amount of data available on the vapor-liquid behavior of such systems. Solid solubility data are quite important for use in the design of liquefaction, vaporization, and transport systems for liquefied natural gas (LNG) and liquefied petroleum gas (LPG). Kurata (5) has reviewed and summarized most of the experimental data on solid solubility of hydrocarbons in liquefied methane. The best recent data on the solid solubility of hydrocarbons in methane are those of Kuebler and McKinley (2, 3). Luks et al. (7) have developed procedures for predicting solid solubility in multicomponent systems based upon experimental data on all of the constitutive binary systems. Additional experimental data on solid solubility of hydrocarbon components including alkane, naphthene, and aromatic substances in methane, ethane, and propane are necessary. Such data will be used in the design of a variety of cryogenic processes, including the design of the recently proposed slurry pipe lines to transport both LNG and crude oil simultaneously.

Experimental Section

The apparatus was identical with that reported by Lee and Kohn (6) which was used in other solid phase studies (1, 4). The equilibrium cell was immersed in a bath contained in a 4.0-1. cylindrical Dewar flask which was concentrically mounted inside an 8 in. o.d. cylindrical battery jar. The bottom of the air space between the Dewar flask and the battery jar contained about 100 g of 13A molecular sieves. This prevented the condensation of water on the Dewar flask. At temperatures higher than 156 K the bath liquid was absolute ethyl alcohol. Mixtures of absolute alcohol and *n*-propyl alcohol were found suitable at temperatures down to 140 K. Bath temperatures down to 188 K were achieved by use of a "CRYOCOOL-100" cascade refrigerator whose cooling coil was immersed in the working bath. At temperatures below 188 K liquid nitrogen was metered to a copper coil inside the working bath. Temperatures of the bath were controlled using a Model 94 Bayley Precision temperature controller which generally could achieve temperature control to ± 0.05 °C. Temperatures were taken on a platinum resistance thermometer which had a calibration correct at least to ±0.03 °C. Pressures were taken on Heise bourdon tube gauges which were set against a dead weight gauge. The pressure gauges were accurate to about ± 0.07 atm. Volumes of the liquid phase inside the cell were taken relative to calibration marks on the outside of the cell. The volume calibration was correct to at least $\pm 0.2\%$ when filled to about 10 ml.

Pure solute liquid was charged to a clean empty equilibrium cell. The mass of the liquid was determined by weighing techniques to at least \pm 0.2 mg. The cell was chilled to 0 °C and the air was flushed from it by repeated charging to 7 or 8 atm with ethane gas. The cell was then immersed in the Dewar flask and ethane added from a reservoir at constant pressure and temperature by use of mercury displacement pump. The reservoir